
Implementation of generic SoA data structures in the

CMS software

Eric Cano and Andrea Bocci for the CMS collaboration

CERN, European Organization for Nuclear Research, Meyrin, Switzerland

E-mail: eric.cano@cern.ch

Abstract. GPU applications require a structure of array (SoA) layout for the data to achieve
good memory access performance. During the development of the CMS Pixel reconstruction
for GPUs, the Patatrack developers crafted various techniques to optimise the data placement
in memory and its access inside GPU kernels. The work presented here gathers, automates and
extends those patterns, and offers a simplified and consistent programming interface.

The work automates the creation of SoA structures, fulfilling technical requirements like
cache line alignment, while optionally providing alignment and cache hinting to the compiler
and range checking. Protection of read-only products of the CMS software framework (CMSSW)
is also ensured with constant versions of the SoA. A compact description of the SoA is provided
to minimize the size of data passed to GPU kernels. Finally, the user interface is designed to be
as simple as possible, providing an AoS-like semantic allowing compact and readable notation
in the code.

1. Data layout in GPUs: Array of structure vs Structure of Arrays
Compared to CPUs, graphical processing units (GPUs) provide vast amounts of processing
power by trading scheduling silicon real estate with arithmetic and logic unit (ALU) space,
allowing many computations — in the order of thousands — to be executed in parallel. This
trade-off is achieved with multiple ALUs executing the same instruction at the same time on
their respective threads, in a lockstep fashion.

The width of this parallel execution — and naming — varies from manufacturer to
manufacturer: 8, 16 or 32 threads per wave for Intel, 32 or 64 threads per wavefront for AMD
and 32 threads per warp for NVIDIA. Like on CPUs where the various cores share the memory
subsystem, the GPU cores executing the lock stepped threads share the same memory controller
and cache, easily overloading it if accessing data scattered over many cache lines; the spread of
memory accesses should be minimized by adequately laying out the data in memory. In many
cases, memory access is the limiting factor for performance.

In a common scenario where each thread processes an instance of a structure, the usual
strategy consists in reorganizing classic arrays of structures (AoS) into structures of arrays (SoA)
where corresponding elements of successive structures are stored contiguously in cache-aligned
columns, as illustrated in figure 1.

While the physical layout in memory is optimized for parallel processing, the per thread logic
remains that of an AoS as shown in figure 2.



AoS

x₀ y₀ z₀

₀ ₁ ₂ ₃

x₁

 threads

 Cache lines: 3 memory accesses

y₁ z₁ x₂ y₂ z₂ x₃

...

...

...

...

...

₀ ₁ ₂ ₃
 threads

...

x₀ x₁ x₂ x₃
y₀ y₁ y₂ y₃
z₀ z₁ z₂ z₃

Cache lines: 1 memory access

...

SoA

Figure 1. AoS vs SoA access patterns

struct AoS {

static const size_t SIZE = 54;

struct Element {

double x, y, z;

uint32_t id;

Eigen::Matrix <double , 3, 6> m;

};

Element elements[SIZE];

double r;

};

AoS aos;

const Eigen::Matrix <double , 3, 6> matrix{

{1, 2, 3, 4, 5, 6},

{2, 4, 6, 8, 10, 12},

{3, 6, 9, 12, 15, 18}};

for (uint32_t i = 0; i < AoS::SIZE; i++) {

if (i == 0)

aos.r = 1.0;

aos.elements[i] =

{ 0., 0., 0., i, matrix * i};

}

Figure 2. AoS C++ code

2. Pre-existing implementations of SoA in CMSSW
Prior to the work described here, SoAs were already in place in the CMSSW code in multiple,
ad-hoc implementations. Some have compilation time defined sizes, while others are sized at
run time; some used multiple memory allocations for each SoA, consequently requiring multiple
memory transfers between host and device. The primitives hinting the compiler for cache type
choice were also inserted directly in the using code.

3. Generic SoA and managing class hierarchy
The generic SoA described here automates the definition and implementation of runtime sized
SoAs, and automatically generates a hierarchy of classes which handle different aspects of the
SoA. Layouts divide a memory buffer into runtime sized columns, while Views provide the
interface to the data. The latter are the lightweight structures passed to kernels. They are
limited to a pointer for each column, and some sizes. Buffers can be allocated on host memory,
pinned host memory or device memory. The Layout is memory type agnostic and will subdivide
any type of Buffers indifferently.

SoA structures replaced those manually defined by GPU experts during the initial stages of
GPU support addition to CMSSW. Column access functions are now automatically defined with
optimization. Memory layout is defined over an unified buffer instead of per-column ones. SoA
templates will allow subdetector field experts to generate optimized structures automatically.
As an example, the SoA template version definition of a 4 columns structure takes 8 lines in one
place, replacing 35 lines over multiple files.

Data transfers from host to device and vice-versa are implemented with full Buffer copies.
On top of this hierarchy of classes stands the PortableCollections; they handle the allocation
of buffers of the proper size and the initialization of the Layout on top of the former. The
host flavor of PortableCollection also manages the serialization and deserialization of data
between memory and ROOT files.



4. Technical implementation

x
y
z
id 
r 

pad
pad
pad

pad

18 matrix rows in total...
pad...

... pad

m

x
y
z
id
r

m
m stride

size

pad

SoA View Buffer with SoA Layout

Figure 3. Buffer with SoA Layout and
View

The generic SoA supports three types of elements:
numeric columns, scalars and Eigen [2] columns. The
numeric columns are targeted at numeric types, but
can functionally accommodate other classes, with
potential performance side effects. Those columns
contain as many elements as the SoA does. The
scalars hold a single element per SoA and are not
available via row access. The last type, Eigen columns
can hold vectors and matrices, with one numeric
column per vector or matrix entry. The resulting
memory layout is illustrated by figure 3

The generic SoA implementation targets a notation
as concise and readable as possible, keeping the AoS
syntax style, as it better represents the problem.
Unlike Python, C++ is statically typed: code
generation has to happen before compile time.
Therefore generic SoAs are implemented in macros leveraging the Boost::PP [1] package.

An example of SoA layout declaration is shown on figure 4, with 4 individual columns (lines
9-12), a single scalar value (line 9) and an Eigen matrix (lines 4 and 17). Their use in a CUDA
kernel is shown figure 5 with a full row initialization (columns and Eigen matrix) on line 18, and
some column values computations on line 22.

The logic rows are accessed with operator[], and can be stored in lightweight proxy variables
(line 21) to allow concise notation as illustrated by the first 2 operands of line 22.

1 namespace portabletest {

2 // this typedef is needed because commas

3 // confuse macros

4 using Matrix = Eigen ::Matrix <double , 3, 6>;

5
6 // SoA layout with x, y, z, id , m fields

7 GENERATE_SOA_LAYOUT(TestSoALayout ,

8 // columns: one value per element

9 SOA_COLUMN(double , x),

10 SOA_COLUMN(double , y),

11 SOA_COLUMN(double , z),

12 SOA_COLUMN(int32_t , id),

13 // scalars: one value for the

14 // whole structure

15 SOA_SCALAR(double , r),

16 // Eigen columns

17 SOA_EIGEN_COLUMN(Matrix , m))

18 using TestSoA = TestSoALayout <>;

19 } // namespace portabletest

Figure 4. SoA declaration

1 static __global__ void testAlgoKernel(

2 portabletest :: TestSoA ::View view ,

3 int32_t size) {

4 const int32_t thread = blockIdx.x *

5 blockDim.x + threadIdx.x;

6 const int32_t stride = blockDim.x *

7 gridDim.x;

8 const portabletest :: Matrix

9 matrix {{1, 2, 3, 4, 5, 6},

10 {2, 4, 6, 8, 10, 12},

11 {3, 6, 9, 12, 15, 18}};

12
13 if (thread == 0) {

14 view.r() = 1.;

15 }

16 for (auto i = thread; i < size;

17 i += stride) {

18 view[i] = {0., 0., 0., i, matrix * i};

19 // Alternate ways to access the rows ,

20 // member by member

21 auto vi = view[i];

22 vi.x() = vi.y() = view[i].z() = 0.;

23 }

24 }

Figure 5. SoA use in a CUDA kernel

4.1. Layout class: memory management
The necessary Buffer size can be computed by a static helper function from the Layout class.
The columns layout inside the buffer is computed by the constructor of the Layout class; it will
divide the Buffer by computing the column addresses, adding padding at the end of columns if
necessary to ensure cache line alignment. Additionally, stride length and total size is computed
for Eigen columns, to be used by Eigen itself and serialization, respectively.



4.2. View class: data access
The View class is designed to contain the minimal necessary variables to ensure data access, and
the corresponding functions. This minimal memory footprint ensures efficient kernel launches.
The View contains the size of the columns, one pointer to each of them or scalar, plus the stride
of the Eigen columns — avoiding any size computation kernel side.

The View — the interface to the data — provides a logic row accessor in the form of
operator[]. The row object provides accessors to column components for the selected row.
operator[] optionally range checks indices. The accessors to scalar components are direct
members of the View. Likewise, extra column accessors provide pointers to each column
component.

A const variant of the class is available, ensuring that products consumed by CMSSW
modules remain immutable. This class is distinct, completely forbidding write access even via
const casting.

Another constructor variant, useful for adapting an existing code base, allows per column
initialization, bypassing buffer splitting and providing the SoA interface without buffer
allocation.

The View classes can be defined with any set of components from multiple Layouts and Views.
Nevertheless, the most common use of the View is the trivial one, an automatically generated
View which provides access to every component of the Layout.

The constructor of the View can optionally validate column alignment. All non-Eigen
accessors provide optional compiler cache hinting, ensuring use of the non-coherent cache on
nVidia GPUs and similar optimizations in other environments.

4.3. Cache hinting, range checking and other tunable behaviors
Optional behaviors of Layouts and Views are selected at compilation time as template
parameters. The defaults are usually the right choice, and most common setup. The parameters
and their defaults are shown in figure 6.

template < std:: size_t ALIGNMENT = cms::soa:: CacheLineSize :: defaultSize ,

bool ALIGNMENT_ENFORCEMENT = cms::soa:: AlignmentEnforcement ::relaxed >

struct Layout;

template < std:: size_t VIEW_ALIGNMENT = cms::soa:: CacheLineSize :: defaultSize ,

bool VIEW_ALIGNMENT_ENFORCEMENT = cms::soa:: AlignmentEnforcement ::relaxed ,

bool RESTRICT_QUALIFY = cms::soa:: RestrictQualify ::enabled ,

bool RANGE_CHECKING = cms::soa:: RangeChecking ::disabled >

struct View;

Figure 6. SoA template parameters and defaults

5. Portable collections: buffer management
PortableCollections are templates parametrized on Layouts. They manage the allocation of
Buffers and the creation of Layouts and Views. As CMS is currently moving from CUDA to
Alpaka [3] [4] [5], PortableCollections exist in multiple flavors: both for CUDA and Alpaka,
and with variants for host side and devices in each case. All versions handle the allocation of the
corresponding buffers. The PortableCollection then provides access to the buffers for data
transfers between host and device, the views for data access, and can be serialized to and from
ROOT files [6] — for the host use case. A CUDA code example is illustrated in figure 7 and the
necessary ROOT streaming declaration in figure 8

The ROOT data files generated from the PortableCollections can be readily used in
bare ROOT, but the default memory layout used by ROOT when reading them back is not



using TestDeviceCollection = cms::cuda:: PortableDeviceCollection <portabletest ::TestSoA >;

TestDeviceCollection deviceProduct(size_ , ctx.stream ()};

testAlgoKernel(deviceProduct.view(), deviceProduct ->metadata (). size ());

cudatest :: TestHostCollection hostProduct{size_ , ctx.stream ()};

cms::cuda:: copyAsync(hostProduct.buffer(), deviceProduct.const_buffer (),

deviceProduct.bufferSize (), ctx.stream ());

Figure 7. Instanciation and device-to-host copy of a portable collection

appropriate for use with GPUs. Optimal ROOT serialization is achieved with automatically
generated functions that ensure proper memory allocation and data placement at read time.
The streamer of the PortableCollection allocate the memory and delegates the copying of the
data from the ROOT file into the memory columns to the Layout streamer.

<lcgdict >

<class name="portabletest::TestHostCollection"/>

<read sourceClass="portabletest::TestHostCollection"

targetClass="portabletest::TestHostCollection"

version="[1-]" source="portabletest::TestSoALayout <128, false > layout_;"

target="buffer_ ,layout_ ,view_" embed="false">

<![CDATA[

portabletest::TestHostCollection::ROOTReadStreamer(newObj , onfile.layout_ );

]]>

</read>

<class name="edm::Wrapper <portabletest::TestHostCollection >" splitLevel="0"/>

</lcgdict >

Figure 8. Layout and streamer declaration for ROOT streaming

6. Conclusion, status and further developments
So far, the pixel local reconstruction has been ported to this generic SoA approach. Systematic
use of a generic SoA reduced memory allocation number, and simplified code. The previously
scattered SoA knowledge is now consolidated in a single package and its use automated. Some
manual XML description of the data structures are still necessary, automation of this step is
under development.

Multi layout data collections are also in the works. They will allow keeping in the same
product sets of related data of different sizes, like tracks and hits with cross reference by index.

Sub buffer, column level access is also investigated to optimize some use cases.

7. References
[1] The Boost Library Preprocessor Subset for C/C++. https://www.boost.org/doc/libs/1_67_0/libs/

preprocessor/doc/index.html.
[2] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
[3] Benjamin Worpitz. Investigating performance portability of a highly scalable particle-in-cell simulation code

on various multi-core architectures, Sep 2015.
[4] Erik Zenker, Benjamin Worpitz, René Widera, Axel Huebl, Guido Juckeland, Andreas Knüpfer, Wolfgang E.

Nagel, and Michael Bussmann. Alpaka - an abstraction library for parallel kernel acceleration. IEEE
Computer Society, May 2016.

[5] A. Matthes, R. Widera, E. Zenker, B. Worpitz, A. Huebl, and M. Bussmann. Tuning and optimization for a
variety of many-core architectures without changing a single line of implementation code using the alpaka
library. Jun 2017.

[6] ROOT Data analysis framework. https://root.cern.ch//.

https://www.boost.org/doc/libs/1_67_0/libs/preprocessor/doc/index.html
https://www.boost.org/doc/libs/1_67_0/libs/preprocessor/doc/index.html
https://root.cern.ch//

