
Updates on the Low-Level Abstraction of

Memory Access

Bernhard Manfred Gruber

EP-SFT, CERN, Geneva, Switzerland
Center for Advanced Systems Understanding (CASUS), Saxony, Germany
Helmholz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany

E-mail: bernhard.manfred.gruber@cern.ch

Abstract. Choosing the best memory layout for each hardware architecture is increasingly
important as more and more programs become memory bound. For portable codes that run
across heterogeneous hardware architectures, the choice of the memory layout for data structures
is ideally decoupled from the rest of a program. The low-level abstraction of memory access
(LLAMA) is a C++ library that provides a zero-runtime-overhead abstraction layer, underneath
which memory mappings can be freely exchanged to customize data layouts, memory access and
access instrumentation, focusing on multidimensional arrays of nested, structured data. After
its scientific debut, several improvements and extensions have been added to LLAMA. This
includes compile-time array extents for zero-memory-overhead views, support for computations
during memory access, new mappings for bit-packing, switching types, byte-splitting, memory
access instrumentation, and explicit SIMD support. This contribution provides an overview of
recent developments in the LLAMA library.

1. Introduction
The performance gap between CPU and memory widens continuously – many programs
nowadays are memory-bound. Compute and memory hardware is increasingly heterogeneous
and writing portable and performant programs becomes harder. Memory-related optimizations
typically depend on full control over data layout and memory access. The Low-Level Abstraction
of Memory Access (LLAMA) is being developed as a portable, standard C++17/C++20 library
to fill this gap [1]. At its core, LLAMA separates the algorithmic view of data from its mapping
to memory, allowing different data layouts to be chosen without touching the algorithm.

Conceptually, LLAMA uses a record dimension and several array dimensions to span a data
space of objects which should be mapped to memory. A user’s program interacts with this
data space via a View, with individual records via RecordRef and with the final objects via
l-value references or proxy references(a user-defined type that acts like a language built-in
reference). The data space is mapped to a memory layout using an exchangeable and user-
definable mapping. This mapping can be augmented with information on target hardware
and access pattern. LLAMA also supports layout-aware copy operations. Despite these many
capabilities, further extensions to LLAMA were necessary and have been developed since its
first publication [2]. In this article, we would like to present these recently introduced features
and discuss their applications and use cases.

https://orcid.org/0000-0001-7848-1690


M
em

or
y 

m
ap

pi
ng

 b
ac

ke
nd

U
se

r 
fa

ci
ng

 fr
on

te
nd

LLAMA data spaceProgram

Record dimension

Array dimensions

represents
View

RecordRef

RecordRef

T&/ProxyRef

Elem1

Elem2

Elem3

Record

0
1

...

01 ...

Record

points to

Memory layouts

Access pattern

Ex
ch

an
ge

ab
le

 m
ap

pi
ng

Layout aware
copy

input

Target hardware information

callscopy(...)

...

pr
od

uc
es

Figure 1. Conceptual overview of LLAMA.

2. Compile-time array extents
Previously, the number of array dimensions in LLAMA were specified at compile-time, but the
extents of each dimension were strictly runtime values. Also, all indexing and memory offset
calculations used the std::size_t data type, which commonly has a 64-bit representation on
many systems today. This suffices for common CPUs and big LLAMA views, where the array
extents stored inside the view are negligible. However, GPUs can incur higher costs for 64-bit
integer arithmetic compared to 32-bit. For example, dedicated 64-bit integer hardware is absent
from CUDA architectures like Hopper [3] and the CUDA programming guide [4]. And while the
AMD MI200 architecture supports some 64-bit integer instructions, it notable lacks arithmetic
ones [5]. Therefore, using smaller integral types is desirable. Furthermore, small LLAMA views,
e.g., placed in a GPU’s shared memory, cannot afford to additionally store the view’s array
extents. Additionally, such extents are often derived from hardware quantities, e.g., the shared
memory size per streaming multiprocessor, and known at compile time.

To account for these needs, LLAMA now allows to specify the data type which should be
used in all indexing computations. Additionally, the array extents can be (partially) specified
at compile time and only runtime extents are stored. If all extents are provided at compile time,
array extents and mappings become stateless, which is achieved by a careful implementation
and use of empty-base-class-optimization [6]. Combined with the right blob allocator, the view
becomes a trivial value type and contains only the blobs for the mapped data. The view is
thus trivially constructible and storage-wise equivalent to the mapped data. It can thus be
memcpy-ed, reinterpret-casted from a buffer, or placed in, e.g., CUDA shared memory. Here
are examples of the new array extents API:

auto ae1 = llama::ArrayExtentsDynamic<int, 2>{size1, size2};

auto ae2 = llama::ArrayExtents<std::size_t, 3, llama::dyn, 4, 4>{size};

auto ae3 = llama::ArrayExtents<short, 32, 4, 4>{};

The definition ae1 defines array extents with two dynamic sizes, using int as index type.
Then, ae2 defines array extents with one static extent of 3, a dynamic extent, and two more static
extents of 4 each, using std::size_t as index type. Finally, ae3 defines fully static/compile-
time extents und uses short for all index arithmetic. Allowing this mixing of compile and
runtime extents was inspired by recent changes to the C++23 proposal std::mdspan [7].



3. New memory mappings
Uses of LLAMA in real-world code bases and new environments led to the creation of new
memory mappings, lifted into the LLAMA library for general use. In the following we would
like to present the newly added mappings and their intended area of application:

BitpackIntSoA and BitpackFloatSoA Experimental data in high-energy physics is often
taken using specialized hardware with a precision different than the C++ standard
fundamental types. Storing such values in the next bigger fundamental type wastes
unnecessary bits of storage space but loads and stores use fast conventional hardware
instructions. The BitpackIntSoA mapping allows to specify a desired bit count for integral
types. The values will be packed/unpacked when stored to/loaded from memory. The
bitpacked values are then further organized as Struct of Arrays (SoA), but we want to
generalize this aspect in the future. The BitpackFloatSoA allows the user to individually
specify the desired bit count for mantissa and exponent of floating-point values in the record
dimension. Floating-point semantics are preserved as best as possible, including handling
of NAN and INF values and mapping overflowing values during packing to INF.

Changetype Because of the packing/unpacking overhead required by the bitpack mappings, a
mere change of the storage data type is computationally more efficient, because the hardware
may have appropriate conversion instructions. Such a conversion could, e.g., map a double

to a float, or even to one of the C++23 extended floating point types [8]: float16, float32,
float64, float128 or bfloat16. The adapted record dimension can then be mapped using
a further mapping. This mapping was inspired from the accessor of Ginkgo [9].

Bytesplit Many compression algorithms are more efficient when compressing a stream of
zeros. If the values in an integer array are small, the higher-order bytes may often be
just zero. Splitting the values into their bytes and regrouping those by their order can
effectively co-locate many zero-bytes and thus lead to higher compression ratios (cf. the
BYTE STREAM SPLIT encoding in Apache Parquet). The Bytesplit mapping generalized this
approach by splitting each type in the record dimension into a byte array of static size, and
then forwarding the resulting record dimension to any further mapping.

Null Sometimes we do not need to store all the fields of a LLAMA view. An example is a
view acting as a cache to a different view, e.g., in GPU shared memory, for a particular
algorithm that only works on a subset of the record dimension. A different use case is to
remove the effect of accessing a field when, e.g., profiling. The Null mapping discards any
values written to it and returns a default constructed value when reading from it. It is
intended to be used together with the Split mapping, to select which part of the record
dimension to not map to physical storage.

FieldAccessCount and Heatmap These will be discussed in section 4.

While we have tested these new mappings in simple examples, we would like to properly
explore the impact of these new memory mappings in a future publication.

4. Memory access instrumentation
LLAMA provides two instrumentation mappings, FieldAccessCount1 and Heatmap. The
lightweight FieldAccessCount counts the accumulated number of accesses per record field. The
heavyweight Heatmap counts accesses to storage bytes at a configurable granularity such as
bytes or cache lines. Both mappings forward all mapping logic to, and can thus instrument, an
arbitrary inner mapping.

Counting memory accesses is performed as side effect of data access and costs one atomic
increment to a dedicated memory location per regular access. For CUDA, we measured, e.g.,

1 The FieldAccessCount mapping was called Trace in previous versions of LLAMA.



SimdN<T, N, ...> N > 1 N == 1

Record dim T One<SimdizeN<T, N, ...>> One<T>

Scalar T SimdizeN<T, N, ...> T

Table 1. LLAMA’s SimdN creates SIMD versions of scalar types or records, with a desired
SIMD width N . For N = 1, scalar types and records are created. Otherwise, SimdizeN turns a
scalar T into a SIMD vector of T, and a LLAMA record into a record with simdized field types.

a 3x slowdown in a particle transport simulation built with AdePT [10]. While the size of the
extra memory to store the counters is negligible for the FieldAccessCount mapping (2 times the
number of record fields), the Heatmap at highest granularity requires an extra counter per byte
of memory. For a 64-bit (8 bytes) counter this results in an 8x memory overhead.

Software instrumentation, like discussed here, also comes with some limitations: LLAMA
cannot observe what the hardware and the compiler/optimizer do. E.g., whether a memory read
is served from RAM or cache, or whether a second read to the same address is optimized out and
served from a register. Initial refactoring can help to increase the accuracy of instrumentation
results, e.g., by replacing repeated access to memory by a local variable.

We extensively demonstrate LLAMA’s instrumentation capabilities in our integration into
the AdePT project, where we show tracing results and heatmaps of various memory access
patterns of a particle transport simulation [11].

5. Explicit SIMD support
Programs using Single Instruction Multiple Data (SIMD) perform the same operation on
N operands at the same time, typically supported by dedicated processor instruction sets.
Automatic vectorization of scalar code to SIMD instructions by modern compilers is brittle and
may fail for advanced codes, requiring the use of explicit SIMD APIs and dedicated libraries [12].
LLAMA has been extended to support such SIMD libraries.

The primary interaction between SIMD types and LLAMA are memory-layout-aware N -
element vector load and store operations. Although many SIMD instructions also support
memory operands in computational instructions, those can usually be produced by the compiler
by fusing a load/store and a compute instruction. For convenience, LLAMA also provides
simdized records, a term adopted from the Vc library [12] meaning the creation of a SIMD version
of a type. Furthermore, load/store operations to handle scalar and simdized records uniformly
have been added to LLAMA. The API is independent of a SIMD library and integration is
handled via type traits (i.e., C++ template specialization for user-defined types).

LLAMA can simdize scalar types or record dimensions (structured data) to a specified N
using the new SimdN API, as described in table 1. Algorithms should be written with a flexible
N to be portable. However, N needs to be fixed at compilation by the user and depends on the
target hardware, compilation flags and involved data types. While this handles well-established
SIMD instruction sets like AVX or NEON, newer ones like ARM’s Scalable Vector Extension
have a runtime vector length. We have yet to see how to deal with such instruction sets. Beside
SimdN to declare variables, LLAMA offers the loadSimd and storeSimd functions to transfer
data between a SIMD construct or scalar and a reference to memory. LLAMA will handle records
and the underlying memory layout transparently for the user. Figure 2 shows a simdized version
of the update routine of the all-pairs n-body simulation from the original LLAMA paper [2].
With N > 1 and the right compiler flags, SIMD code is produced. For N = 1, a scalar version
is generated without any trace of SIMD constructs. The scalar version can run on CUDA.

Figure 3 compares a LLAMA n-body simulation against manually written scalar and SIMD
versions on an AMD Ryzen 9 5950X CPU with AVX2. Results are single-threaded to emphasize



template <int N, typename ParticleView>

void updateSimd(ParticleView& particleView) {

using Particle = ParticleView::RecordDim;

for(std::size_t i = 0; i < problemSize; i += N) {

llama::SimdN<Particle, N, std::fixed_size_simd> simdParticles;

llama::loadSimd(particleView(i), simdParticles);

for(std::size_t j = 0; j < problemSize; ++j)

pPInteraction(simdParticles, particleView(j));

llama::storeSimd(simdParticles(tag::Vel{}), particleView(i)(tag::Vel{}));

}

}

Figure 2. A SIMD version of the n-body update routine from the original LLAMA paper [2],
using std::fixed_size_simd as SIMD technology, as proposed for C++26 [13].

 0

 2

 4

 6

 8

 10

 12

AoS SoA AoSoA8

ru
nt

im
e 

[s
]

LLAMA N=1
Manual scalar

LLAMA N=8
Manual SIMD

nbody update CPU 64ki particles

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

AoS SoA AoSoA8

ru
nt

im
e 

[s
]

LLAMA N=1
Manual scalar

LLAMA N=8
Manual SIMD

nbody move CPU 256Mi particles

Figure 3. Benchmark of the CPU LLAMA n-body with a selection of popular mappings
against various manually written versions.

the efficiency of the generated instructions. The scalar runs with the Arrays of Structs (AoS)
layout are not auto-vectorized by the compiler. LLAMA matches the manually written code
here. The manual SIMD implementation of the move step for the AoS layout uses gather
instructions, whereas LLAMA uses multiple scalar loads, for which the compiler seemed to
generate better code for the target CPU. Replacing the gather instructions in the manual SIMD
move by multiple scalar loads, gets the runtime on par with the LLAMA SIMD runtime. For
SoA, the multi-blob (MB) version is used, which stores each field in a separate allocation, and
the results are nearly on-par between LLAMA and manually written versions. Both scalar codes
have been auto-vectorized by the compiler. The Arrays of Structs of Arrays (AoSoA) layout
in LLAMA has overhead in this example, which is especially visible in the n-body move phase
and explained in more detail in the LLAMA paper [2]. It is caused by the LLAMA version
using a single for-loop to traverse the array index space once, while the manual AoSoA version
can use two nested for-loops (traversing AoSoA blocks and lanes), matching the memory layout
structure and allowing easier auto-vectorization. Further investigation is pending to provide
such mapping-aware loop structures inside LLAMA as well. Except for the AoSoA, LLAMA
generally fulfills the zero-overhead principle in scalar and SIMD code.



6. Summary and outlook
We have presented recent updates and new features of LLAMA since its previous publication.
Compile-time specification of array extents support common use cases for shared memory caches
in GPGPU programming. New memory mappings open advanced possibilities for separating
arithmetic from in-memory precision with various tradeoffs, supporting data arrangement for
improved compression, and enabling instrumentation and tracing of memory access patterns.
Finally, explicit SIMD support for LLAMA closes the gap between SIMD computing, structured
data and arbitrary memory layouts.

In the future, we will focus on testing LLAMA with more real-world applications and on
more hardware platforms. This will include the development of a systematic workflow to improve
memory-related performance aspects of such applications. Supporting additional access patterns
beyond LLAMA’s random access could further solve the slow AoSoA and pave the way for
LLAMA mappings with block compression algorithms.

Acknowledgments
This work has been sponsored by the Wolfgang Gentner Programme of the German Federal
Ministry of Education and Research (grant no. 13E18CHA). The author would like to thank
Guilherme Amadio, Verena Gruber and Stephan Hageböck for proof-reading and commentary.

References
[1] Gruber B M 2023 LLAMA – Low-Level Abstraction of Memory Access URL https://github.com/alpaka-

group/llama

[2] Gruber B M, Amadio G, Blomer J, Matthes A, Widera R and Bussmann M 2023 LLAMA: The low-level
abstraction for memory access Software: Practice and Experience 53 115–141

[3] Andersch M, Palmer G, Krashinsky R, Stam N, Mehta V, Brito G and Ramaswamy S 2022 NVIDIA Hopper
Architecture In-Depth URL https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-
depth/

[4] NVIDIA Corporation 2023 CUDA C++ Programming Guide URL https://docs.nvidia.com/cuda/cuda-
c-programming-guide/

[5] Advanced Micro Devices 2021 ”AMD Instinct MI200” Instruction Set Architecture Reference Guide URL
https://developer.amd.com/wp-content/resources/CDNA2 Shader ISA 18November2021.pdf

[6] Meyers N 1997 The ”Empty Member” C++ Optimization URL http://www.cantrip.org/emptyopt.html
[7] Trott C et al. 2022 P0009: MDSPAN Tech. rep. ISO JTC1/SC22/WG21 - Papers Mailing List URL

https://wg21.link/p0009r18
[8] Olsen D, Burylov I and Dominiak M 2022 P1467: Extended floating-point types and standard names Tech.

rep. ISO JTC1/SC22/WG21 - Papers Mailing List URL https://wg21.link/p1467r9
[9] Grützmacher T, Anzt H and Quintana-Ort́ı E S 2023 Using ginkgo’s memory accessor for improving the

accuracy of memory-bound low precision blas Software: Practice and Experience 53 81–98
[10] Amadio G, Apostolakis J, Buncic P, Cosmo G, Dosaru D, Gheata A, Hageboeck S, Hahnfeld J, Hodgkinson

M, Morgan B, Novak M, Petre A A, Pokorski W, Ribon A, Stewart G A and Vila P M 2023 Offloading
electromagnetic shower transport to gpus Journal of Physics: Conference Series 2438 012055 URL
https://dx.doi.org/10.1088/1742-6596/2438/1/012055

[11] Gruber B M, Amadio G and Hageböck S 2023 Challenges and opportunities integrating LLAMA into AdePT
21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research

[12] Kretz M and Lindenstruth V 2012 Vc: A c++ library for explicit vectorization Software: Practice and
Experience 42 1409–1430

[13] Kretz M 2023 P1928: Merge data -parallel types from the Parallelism TS 2 Tech. rep. ISO JTC1/SC22/WG21
- Papers Mailing List URL https://wg21.link/p1928r2

https://github.com/alpaka-group/llama
https://github.com/alpaka-group/llama
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://developer.amd.com/wp-content/resources/CDNA2_Shader_ISA_18November2021.pdf
http://www.cantrip.org/emptyopt.html
https://wg21.link/p0009r18
https://wg21.link/p1467r9
https://dx.doi.org/10.1088/1742-6596/2438/1/012055
https://wg21.link/p1928r2

