
Distributed data processing pipelines in ALFA

Alexey Rybalchenko, Dennis Klein, Mohammad Al-Turany

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt,
Germany

E-mail: a.rybalchenko@gsi.de

Abstract.
The common ALICE-FAIR software framework ALFA offers a platform for simulation,

reconstruction and analysis of particle physics experiments. FairMQ is a module of ALFA
that provides building blocks for distributed data processing pipelines, composed of components
communicating via message passing. FairMQ integrates and efficiently utilizes standard industry
data transport technologies, while hiding the transport details behind an abstract interface. In
this work we present the latest developments in FairMQ, focusing on the new and improved
features of the transport layer, primarily the shared memory transport and the generic interface
features. Furthermore, we present the new control and configuration facilities, that allow
programmatically controlling a group of FairMQ components. Additionally, new debugging and
monitoring tools are highlighted. Finally, we outline how these tools are used by the ALICE
experiment.

1. Introduction
The ALICE-FAIR software framework, ALFA[1], offers a robust platform for the simulation,
reconstruction, and analysis of particle physics experiments. One of the critical components of
this framework is FairMQ[2], a module that provides building blocks for creating distributed
data processing pipelines. This module is designed to integrate seamlessly with standard
industry data transport technologies, offering a high-level, abstract interface for communication
between the different components. In this work we explore the latest developments in FairMQ,
highlighting new and improved features.

One of the transports provided by FairMQ is the shared memory transport[3]. This transport
is designed to handle the large amounts of data generated by particle physics experiments,
providing an efficient way to transfer data between processes on the same node without copy
of the data buffers. The shared memory transport has been extended with support for event
notifications, shared buffer ownership and externally created buffers.

Another important aspect of FairMQ is its control and configuration facilities, which allow
for programmatic control over a group of FairMQ processes. This feature enables the creation
of complex processing pipelines that can be easily managed and reconfigured as needed. The
control facilities have evoled into a separate package called ODC (Online Device Control)[4],
which uses DDS (Dynamic Deployment System)[5] under the hood. We will showcase these
control facilities and their primary features.

Furthermore, we will highlight the new debugging and monitoring tools that have been
introduced in FairMQ. These tools provide valuable insights into the performance and behavior
of the processing pipelines, making it easier to diagnose and resolve issues.



In conclusion, we will outline how these tools are used in production by the ALICE
experiment, demonstrating the practical application of FairMQ in a real-world scenario. Overall,
the latest developments in FairMQ and ODC provide comprehensive and flexible building blocks
for the distribution and processing of particle physics data. With its efficient transport layer,
programmatic control and configuration facilities, and debugging and monitoring tools, FairMQ
is a critical component of the ALICE-FAIR software framework and an essential tool for particle
physics experiments.

2. Core Concepts
FairMQ follows a number of general goals, including a unified API to different data transports,
hiding transport-specific details from the user, allowing for the transparent combination of
different transports in one device, and transport switching via configuration without modifying
user code.

FairMQ can be divided into two conceptual parts: a library component and a framework
component. Library components offer APIs for data communication, exposing concepts such
as Messages and Channels, that can be used as building blocks for a flexible and efficient
communication. Framework components provide an opinionated way to build controllable and
configurable processes with specific goals in mind.

The main framework concept of the FairMQ library is the Device, which is composed of a
state machine, program options, and command/configuration plugins. Devices are composed
into topologies, representing processing graphs. Independent topologies are isolated in sessions.
This modular and scalable design allows for the creation of complex online processing graphs
that can be easily modified and extended to meet evolving experimental requirements.

The library follows an ownership model, where a Message has single ownership by the process
it is created/received in. Additionally, it is possible to allow the transport to not physically copy
the underlying buffer of a message, but to share it between multiple messages if this is suitable
for efficiency. However, this effectively means that a buffer copied in this way becomes read-only
and modifying it afterwards is undefined behaviour.

3. Data Transport
The abstract message passing interface of FairMQ is implemented by the following three
transports:

• TCP Network transport, based on ZeroMQ[6].

• RDMA (Remote Direct Memory Access) Network transport, based on OFI[7].

• Shared memory transport[3], based on ZeroMQ and boost::interprocess library[8].

The main differences between the transports are highlighted in Table 1. Transport
implementation can be switched via runtime options and can also be efficiently combined within
a single device or a topology as needed.

Since the introduction of the Shared Memory transport several new features have been
introduced:

• Shared memory event notifications. Device can subscribe to memory region
creation/destruction events in order to obtain region address, size and settings prior to
data transfer. This can be used, for example, to register the memory areas for use with
GPU or RDMA.

• Shared ownership for the message buffers. This is a performance optimization allowing the
transport to share the underlying memory buffers, which the user can trigger with an API
call. This can be used when multiple processes need to access the same buffer in parallel.
Modifying shared buffers is undefined behaviour.



Table 1. FairMQ transports. Legend: ’++’ - supported without a data copy, ’+’ - supported
with a data copy, ’-’ - not supported, ’n/a’ - combination makes no sense.

address format ZeroMQ shmem OFI

intra-process inproc://endpoint ++ n/a n/a

inter-process ipc://endpoint + ++ -
tcp://host:port + ++ +

inter-node tcp://host:port + n/a +
verbs://host:port - n/a ++

• Support for externally created regions. User can create (and on demand quickly reset)
shared memory outside of a FairMQ session. This can be helpful when a long memory
registration process is involved, which in this case can be done only once, while keeping (and
resetting) the memory between sessions. No two sessions can use it in parallel however.

4. Device Control
A topology of FairMQ devices can be launched and controlled via the ODC (Online Device
Control) component. ODC acts as a command broker between an Experiment Control System
and one or many topologies of FairMQ devices. ODC shows a homogeneous topology state to
the ECS. The task of process deployment and command exchange between them is implemented
via the APIs of the DDS (Dynamic Deployment System) component.

ODC provides a gRPC server component and a sample gRPC client. A fixed set of commands
is available to launch deployments with FairMQ topologies, control device states and configure
device properties. A single server process can handle multiple DDS/FairMQ sessions in parallel
and reconnect to those which are running prior to server launch.

A simple command line controller is also provided that can be used for testing without gRPC.
Resource management is delegated to the resource managers supported by DDS, such as Slurm.

5. Debugging & Monitoring
Shared memory transport provides a tool to monitor and debug the status of shared memory
and existing messages. The tool provides data for a given FairMQ session, such as:

• Used shared memory segments.

• Total and used size for every segment.

• Information about the creator user and process.

• Number of devices in the session.

• List of messages in a session, with their size, creator ID, memory location, creation
timestamp (available in debug mode).

These debugging features are also provided via an API for integration in user software. This
can be especially interesting for message object information - knowing the data types contained
in the buffers can help to extract additional debugging info, e.g. from data headers.

For general information on a running topology ODC provides status and state commands,
that provide detailed information on the running sessions, topologies and devices.

6. Use in the ALICE experiment
The upgraded ALICE experiment at CERN uses FairMQ in several parts of their system. Some
parts use only the library components of FairMQ, such as the O2 Readout software. This is



deployed on the First Level Processors (FLPs) for detector readout. Other parts use FairMQ
framework and library components as building blocks for a higher level framework, called Data
Processing Layer (DPL)[9][10][11], used for global reconstruction and data aggregation. The
deployment of FairMQ devices on EPNs involves approximately 70,000 devices per session spread
across 200 nodes. Each node handles around 350 devices, which communicate through shared
memory. The topologies are established and managed through ODC using DDS and Slurm. As
the final output data rates of the upgraded experiment are anticipated to be higher, the number
of nodes is expected to increase to 1500, with the same or higher number of devices per node.

7. Conclusion
In this paper, we have presented the latest developments in the FairMQ module, which is a key
component of the ALICE-FAIR software framework. We have shown how FairMQ provides an
efficient and flexible platform for distributed data processing pipelines, with support for shared
memory transport, event notifications, shared buffer ownership, and externally created buffers.

We have also highlighted the control and configuration facilities of FairMQ, provided by the
ODC package, which enable the creation of complex processing pipelines that can be easily
managed and reconfigured. Additionally, we have discussed the new debugging and monitoring
tools that have been introduced in FairMQ, which provide valuable insights into the performance
and behavior of the processing pipelines.

Importantly, we have demonstrated the practical application of FairMQ in a real-world
scenario by showcasing its use in the ALICE experiment. This illustrates the critical role that
FairMQ plays in the distribution and processing of particle physics data.

In summary, the latest developments in FairMQ and ODC offer a comprehensive and
flexible set of building blocks for the simulation, reconstruction, and analysis of particle physics
experiments. With its high-speed transport layer, programmatic control and configuration
facilities, and powerful debugging and monitoring tools, FairMQ is a crucial component of the
ALICE-FAIR software framework and an essential tool for particle physics research.

References
[1] Al-Turany M et al 2015 ”ALFA: The new ALICE-FAIR software framework” J. Phys.: Conf. Ser. 664 072001
[2] Al-Turany M et al 2014 ”Extending the FairRoot framework to allow for simulation and reconstruction of free

streaming data” J. Phys.: Conf. Ser. 513 022001
[3] Rybalchenko A et al 2019 ”Shared memory transport for ALFA”, EPJ Web of Conf. 214 05029
[4] ODC main repository https://github.com/FairRootGroup/ODC accessed: 2023-02-28
[5] Lebedev A and Manafov A 2019 ”DDS: The Dynamic Deployment System”, EPJ Web of Conf. 214 01011
[6] ZeroMQ website http://zeromq.org/ accessed: 2023-02-28
[7] Klein D et al 2019 ”RDMA-accelerated data transport in ALFA”, EPJ Web of Conf. 214 05022
[8] Boost website https://www.boost.org/doc/libs/1 81 0/doc/html/interprocess.html accessed: 2023-02-28
[9] Eulisse G, Konopka P, Krzewicki M, Richter M, Rohr D and Wenzel S 2019 ”Evolution of the ALICE Software

Framework for Run 3”, EPJ Web of Conf. 214 05010
[10] Eulisse G, Alkin A, Grosse-Oetringhaus J F, Hristov P, Innocenti G M and Kabus M J 2020 ”Data Analysis

using ALICE Run 3 Framework”, EPJ Web of Conf. 245 06032
[11] Alkin A, Eulisse G, Grosse-Oetringhaus J F, Hristov P and Kabus M 2021 ”ALICE Run 3 Analysis

Framework”, EPJ Web of Conf. 251 03063


