
CernVM 5: a versatile container-based platform to

run HEP applications

Jakob Eberhardt

Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany

E-mail: jakob.eberhardt@mail.de

Jakob Blomer

CERN, 1211 Geneva 23, Switzerland

E-mail: jblomer@cern.ch

Abstract. Since its inception, the minimal Linux image CernVM provides a portable and
reproducible runtime environment for developing and running scientific software. Its key
ingredient is the tight coupling with the CernVM-FS client to provide access to the base platform
(operating system and tools) as well as the experiment application software. Up to now, CernVM
images are designed to use full virtualization. The goal of CernVM 5 is to deliver all the benefits
of the CernVM appliance and to be equally practical as a container and as a full VM. To this
end, the CernVM 5 container image consists of a “Just Enough Operating System (JeOS)”,
with its contents defined by the HEP OSlibs meta-package commonly used as a base platform
in HEP. CernVM 5 further aims at smooth integration of the CernVM-FS client in various
container environments (such as Docker, Kubernetes, Podman, Apptainer). Lastly, CernVM
5 uses special build tools and post-build processing to ensure that experiment software stacks
using their custom compilers and build chains can coexist with standard system application
stacks. As a result, CernVM 5 aims at providing a single, minimal container image that can be
used as a virtual appliance for mounting the CernVM-FS client and for running and developing
HEP application software.

1. CernVM Project
The CernVM project [1] provides a scalable and easy-to-use platform for the distribution and
management of scientific software stacks for HEP applications. The CernVM virtual appliance
is designed to address the challenges of managing and distributing large and complex software
stacks in scientific research environments. It allows scientists to easily access and use externally
managed analysis applications and frameworks. Aiming to be a “Just Enough Operating
System (JeOS)”, CernVM images serve as a portable run time environment for the CernVM-File
System (CernVM-FS) [2], a distributed file system that allows users to access scientific software
without the need for local software installations. Up until version 4, CernVM images [3] were
mostly designed for full virtualization. Consisting of a minimal Linux kernel and the µCernVM
bootloader, CernVM images are capable of mounting the CernVM-File System upon boot to
load system packages as well as scientific software on demand.



2. Problem Statement
Looking at previous versions, CernVM images are limited in terms of usability as a container. By
design, the µCernVM bootloader approach requires full control of the kernel. However, users keep
shifting their infrastructure towards unprivileged containerized deployments. In addition, the
currently available CernVM container images lack standard features such as native derivability
using common build tools as well as rootless mounting of CernVM-FS repositories.
As new versions of scientific software stacks are frequently released and can quickly grow
to gigabytes of data, it is still not feasible to build individual images for each release and
compiler / OS combination. Therefore, the new version of CernVM has to be designed as a
minimal but extendable appliance, capable of running both system applications and scientific
software installed on CernVM-FS in a single environment. In particular, this can lead to
problems when setup scripts provided by the maintainers of scientific stacks use environment
variables to overwrite local default values for resolving dependencies. In this case, local system
applications and those installed on CernVM-FS break once linked with a mismatching version
of a shared library required by the currently used scientific stack. To prevent this, methods
have to be implemented to make system applications bypass the commonly used environment
variables such as LD LIBRARY PATH to achieve stable usability of the image. Since the CernVM
also targets users in interactive sessions, a graphical interface has to be integrated while keeping
the image size as small as possible. To further enhance the user experience when working with
software loaded from CernVM-FS, methods have to be investigated to enable special-purpose
images with pre-loaded CernVM-FS caches. Lastly, some use cases, e. g. offline computing in
data acquisition systems, still require full virtual machine images. To this end, in an additional
step, the container images should be extended to full VM images to run on common hypervisors
with their own kernel.

3. CernVM 5
The goal of the CernVM 5 project is to bring all the benefits and key features of previous
CernVM versions to native container virtualization using standard container tools and runtimes.
The goals as well as the conception and implementation are further described in this section.

3.1. Goals
Minimal The CernVM 5 base layer image should be built around the applications it serves as
a run time. This includes the CernVM-FS client and the HEP OSlibs [4], a meta-package of
common HEP libraries. To reduce the image size, additional user applications such as editors
and graphical interfaces should be outsourced to a dedicated CernVM-FS repository.

Versatility The container image should run in all common container runtimes such as Docker,
Podman, Apptainer and Kubernetes while supporting rootless mounting of CernVM-FS
repositories. Extended to a full virtual machine image, CernVM 5 should run on standard
hypervisors such as VirtualBox or KVM and on cloud infrastructure such as OpenStack.

Maintainability and Derivability Unlike the previous versions, CernVM 5 images should be
built from standard EL9-compatible packages. This not only removes the effort of building and
maintaining custom packages but also allows user to natively derive their own images from the
CernVM base layer in, e. g. a Dockerfile using stock repositories. Any further customizations to
the used packages should be implemented as a post-build step.

Turnkey CernVM 5 should reduce the effort of getting to a basic deployment with CernVM-FS
access to a minimum by being distributed with a customizable standard configuration and in
standard-compliant image formats.



3.2. Design
The CernVM 5 system consists of the actual base layer image, the system application, and the
externally managed scientific software stacks.

Figure 1. The CernVM 5 system consists of the actual base layer image which is complemented
on-demand by the separate system application area on CernVM-FS. Unlike the scientific stacks
which use environment variables to set up the local environment, the system applications are
closely coupled to the image by using rpath.

Base Layer Image The CernVM 5 base layer image represents a minimal platform to develop
and run HEP analysis software. It consists of the CernVM-FS client and the most common base
libraries included in the HEP OSlibs. Further, the base layer is extendable using the standard
package manager dnf and standard container tools.

System Application Area This CernVM-FS repository hosts interactive and user-focused
applications such as editors, notebooks and command-line utilities. Its binaries are closely
coupled to the base layer image using the hard-coded binary header rpath.

Scientific Software These externally managed stacks bundle applications and libraries into a
compatible release distributed via CernVM-FS. The maintainers of these stacks provide setup
scripts that use environment variables such as LD LIBRARY PATH or PYTHONPATH to allow users
to use different stacks in their local environment.

3.3. Container Image
The CernVM 5 container image build process is implemented in a muti-staged Dockerfile. In
the first step, an intermediate build stage with all necessary build dependencies is started
to construct the root file system of the final image. By creating the root file system from
scratch rather than deriving from a pre-existing image, the final container image only includes a
controlled set of actually needed packages defined in the cernvm-system-defaultmeta-package,
which bundles a minimal set of packages and configurations required to smoothly integrate the
CernVM-FS client and to run scientific software. To prevent the breaking of dynamically linked
system applications as described in the problem statement (see Section 2), an additional build
step was implemented to add a DT RPATH to all installed ELF executables using patchELF. This
binary header is used to resolve the location of shared libraries which are by default located



under the lib and lib64 directories. Most linkers such as ld look up DT RPATH before other
environment variables such as LD LIBRARY PATH. This allows CernVM 5 system applications
to run in local environments modified by scientific software stacks while still using standard
packages. This method further enables users to re-run this post-build processing in their own
derived images, e. g. by embedding it into their Dockerfile.

3.4. System Application Area on CernVM-FS
Additional system applications are available on the dedicated CernVM-FS repository
cernvm-five.cern.ch. It includes packages and applications for interactive use cases like
editors, development tools and other expected utilities. Similar to how the container image
is created, a new release is built by installing the cernvm-system-cvmfs into an empty scratch
directory. The same script used during the container build automatically sets up a DT RPATH for
each ELF executable according to its future location on a CernVM-FS publisher node.

3.5. Web-Based Jupyter Notebooks
Jupyter Notebooks were evaluated to be adequate as a graphical interface for CernVM 5 once for
their popularity among scientists but also for technical reasons. Firstly, CernVM 5 containers
aim to run rootless while still providing full access to all development features. By choosing
a web-based application such as Jupyter Notebooks, the need for elevated privileges or other
host prerequisites such as an open X server can be avoided. Additionally, many scientific stacks,
e. g. the LCG stack [5], already provide their own custom Notebooks that can simply be used
by forwarding the respective port 8888 of the container to the host.

3.6. Images with pre-loaded CernVM-File System Cache
In particular when looking at interactive user sessions, but also when computing resources are
only available for a short amount of time, the start latency of the CernVM-FS client installed in
CernVM 5 images had to be addressed. As a first step towards this problem, methods to build
and distribute CernVM 5 images with scenario-specific CernVM-FS caches were implemented.
The FCC Starterkit tutorial [6] serves as a proof-of-concept for building such an image. Since the
underlying key4hep [7] software stack of this tutorial is frequently updated, the cache delivered
with the image has to be kept in sync with the latest version in an automated manner. This
is implemented in an intermediate container build stage which mounts the latest version of the
stack and runs the test suite of the tutorial, thereby populating the local CernVM-FS cache.
After finishing the test run which performs the tutorial, the stopped intermediate container is
exported and compressed to a standalone image. The resulting speedups can be seen in the
following discussion in section 4.

3.7. Virtual Machine Extension
The root file system of the container image is reused to build a full virtual machine image
upon it. By deriving from the base layer or any other CernVM 5 image and installing the
cernvm-kernel-default RPM, all configuration files and packages needed for full virtualization
are added, such as a kernel and a bootloader.
Using a custom script, the extended root file system is copied to a bootable disk which can be
run on various hypervisors such as VirtualBox or KVM. The CernVM 5 cloud templates provide
seamless integration of cloud-init contextualization when creating or customizing resources
on cloud platforms such as OpenStack or EC2.



4. Discussion
In this section, the results of the CernVM 5 implementation are discussed. As can be seen in
table 1, a smaller image size was achieved by the extra steps taken during the build process which
also includes the processing of system applications to use rpath. The CernVM 5 container image
brings CernVM-FS to various tested container runtimes, some of which are listed in table 2. The
increase in performance by pre-loading CernVM-FS caches for defined workflows can be seen in
table 3.

Table 1. This table compares the result of the CernVM 5 custom build chain to a standard
derived image created by installing the package on top of an EL9 base image. As the CernVM
5 base layer image is specifically built around the dependencies of HEP applications, it includes
no extra packages commonly installed in pre-build base images. This results in a final image
about 200MB smaller than the one built with a naive approach. Additionally, the multi-staged
build enables a single-layer base layer which reduces its complexity and the time needed by the
container runtime to construct it upon start. Lastly, the CernVM 5 system executables are
post-build processed to use DT RPATH to make them usable in the presence of more than one
available source of shared libraries.

CernVM 5 Base Layer Standard Derived Image

Volume (uncompressed, MB) 805 1030
Volume (compressed, MB) 284 382
Installed Packages 457 502
Image Layers one multiple
Standard Derivability
Use of rpath

Table 2. As can be seen in this table, CernVM 5 images integrate the CernVM-FS client in
various container engines using the FUSE interface without elevated privileges. However, if
CernVM-FS is already available on the host system, it can still be bind-mounted to CernVM
5 containers, e. g., to benefit from shared caches. As a novelty, a CernVM 5 container can be
used to forward the CernVM-FS namespace to a Linux host. Previously called Singularity, the
Apptainer engine allows for pre-mounted file systems, e. g. the CernVM 5 system application
area repository.

CernVM-File System Docker Podman Apptainer Kubernetes

Mounted inside
Mounted from host
Mounted to Linux host
Pre-mounted



Table 3. This table compares the execution time of commands needed during the FCC
Starterkit tutorial. The commands were run in the standard CernVM 5 base image and a
special CernVM 5 image distributed with an automatically pre-loaded CernVM-FS cache. It
should be noted that this comparison was conducted from containers running in the CERN
network which already considerably reduces the start latency of the CernVM-FS client due to
the high bandwidth and local CernVM-FS proxy caches.

Base Image FCC Scenario Image

KKMCee -h 1.609s 0.357s
BHLUMI -h 1.569s 0.055s
whizard Z mumu.sin 50.233s 18.971s
babayaga -h 1.635s 0.487s
Import ROOT 6.843s 1.544s
fccanalysis run 11.230s 9.319s

5. Conclusion
The CernVM 5 virtual appliance is a minimal yet complete platform to develop and run HEP
analysis software. As a novelty, it is completely container-based, bringing access to CernVM-
FS to various container runtimes such as Docker, Podman or Apptainer. Build in a custom
multi-staged process, the CernVM 5 image can serve as a base layer using common container
build tools. In an additional post-build step, the installed system executables are modified
to use DT RPATH. This not only ensures stable usability in the presence of multiple sources of
shared libraries but also enables the use of standard packages from stock repositories. CernVM
5 integrates Jupyter Notebooks loaded from CernVM-FS as an easy-to-use and lightweight
graphical interface for developing analysis code. To reduce the start-up latency of the CernVM-
FS client when working on special workflows like tutorials, methods to build and distribute
CernVM 5 images with pre-loaded caches in an automated manner were implemented as a
proof-of-concept. A custom program can be used to extend the CernVM 5 container image
or any given derivation of it to a full virtual machine image, compatible with all common
hypervisors such as VirtualBox or KVM. All sources and links to build products can be found
on the CernVM 5 project page [8].

References
[1] Buncic P, Blomer J, Mato P, Sanchez C A, Franco L and Klemer S 2008 Cernvm - a virtual appliance

for lhc applications Proceedings of the XII International Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT08)

[2] Blomer J, Buncic P, Meusel R, Ganis G, Sfiligoi I and Thain D 2015 Computing in Science and Engineering
17 61–71

[3] Blomer J, Berzano D, Buncic P, Charalampidis I, Ganis G, Lestaris G, Meusel R and Nicolaou V 2014 Journal
of Physics: Conference Series 513

[4] The HEP OSlibs Meta-package https://gitlab.cern.ch/linuxsupport/rpms/HEP OSlibs [Online; accessed
27-December-2022]

[5] Cervantes Villanueva, Javier, Ganis, Gerardo, Konstantinov, Dmitri, Latyshev, Grigorii, Mato Vila, Pere,
Mendez Lorenzo, Patricia, Pacholek, Rafal and Razumov, Ivan 2019 EPJ Web Conf. 214 05020 URL
https://doi.org/10.1051/epjconf/201921405020

[6] The FCC Starterkit Tutorial https://hep-fcc.github.io/fcc-tutorials/index.html [Online; accessed 4-
December-2022]

[7] Ganis G, Helsens C and Völkl V 2021 Eur. Phys. J. Plus 137 149. 8 p (Preprint 2111.09874) URL
https://cds.cern.ch/record/2790916

[8] The CernVM 5 Project on GitHub https://github.com/cernvm/cernvm-five [Online; accessed 27-December-
2022]


