
Optimized GPU usage in high energy physics

applications

Tim Voigtlaender, Manuel Giffels, Günter Quast, Matthias Schnepf
and Roger Wolf
KIT – Karlsruhe Institute of Technology (DE)

E-mail: tim.voigtlaender@kit.edu, Manuel.Giffels@kit.edu, guenter.quast@kit.edu,

matthias.schnepf@kit.edu, roger.wolf@kit.edu

Abstract. Machine learning (ML) applications, which have become quite common tools for
many high energy physics (HEP) applications, benefit significantly from GPU resources. To
fulfill the rapidly increasing demand for GPU resources, the efficient utilization of GPU clusters
is vital. The Karlsruhe Institute of Technology (KIT) provides a GPU cluster, accessible via
a traditional batch system as well as via grid compute elements. Because the exact hardware
needs of such applications heavily depend on the ML hyperparameters, a flexible resource setup
is necessary to utilize the available resources as efficiently as possible. Therefore, the multi-
instance GPU (MIG) feature of the NVIDIA A100 GPUs was studied. Several neural network
(NN) training scenarios performed on the GPU cluster at KIT are discussed to illustrate the
setup that has been used and possible performance gains.

1. Usage of GPU resources by the CMS Collaboration
High energy physics (HEP) computing is a resource-intensive field due to the large amounts
of data provided by the CERN LHC [1] and its experiments, the Compact Muon Solenoid
(CMS) [2] being one of them. In addition to the workload needed to reconstruct the underlying
particle physics events from this data, additional resources are necessary to simulate events
based on theory. Finally, a wide range of end-user analyses require further resources to utilize
the resulting event data and obtain physically relevant results. The hardware necessary for
this is distributed in the Worldwide LHC Computing Grid (WLCG) [3] and is separated into
four layers. The Tier 0, Tier 1 and Tier 2 sites provide resources that are available to the
entire CMS Collaboration. These resources are utilized for a number of tasks, including event
reconstruction, event simulation, long term storage of the data sets and end-user analyses. A
number of Tier 3 sites exist, that are not officially part of the WLCG but still contribute to the
computing resources accessible to HEP physicists. These sites are usually only used by local
groups. Overall, this creates a heterogeneous mix of resources that has to be carefully designed
and managed to satisfy the needs of the LHC and its experiments.
An overview of the plans that the CMS Collaboration has with its computing budget is given in
the 2022 CMS Note [4], including a forecast with regard to GPU resources. It is estimated that
20% of the simulation workload and 25% of the reconstruction workload could be offloaded to
GPU resources. The CMS Collaboration assumes that GPU computing resources are cheaper
than CPU resources by a factor of 2.8, leading to an estimated increase in available computing
resources of 20-26% by the end of the LHC Run 4 in 2030. Another factor in the rising importance



of GPU resources is their use in ML-based end-user analyses. While there are many tasks that
can offload a significant fraction of their work to GPU, ML trainings can be performed almost
completely on GPU.
Many groups in the CMS Collaboration already utilize machines with some GPUs to accelerate
their end-user analyses, but in order to more efficiently use resources like these, advanced
scheduling and wider availability are of importance. For this purpose, the Tier 3 Throughput
Optimized Analysis System (TOpAS) [5] was deployed close to the Tier 1 GridKa site. It
provides opportunistically resources to the CMS Collaboration and contains a significant amount
of GPU resources. The GPUs present are 24 V100S, 8 V100 [6] and 24 A100 [7] NVIDIA GPUs.
Due to the wide usage of GPUs for ML applications outside HEP computing, manufacturers
like NVIDIA have created a number of GPU models with unique features suited for the use in
computing centers, and physicists stand to benefit from this development. One of these features,
the NVIDIA A100’s Multi-Instance GPU (MIG), is the focus of this paper and will be discussed
in detail below.

2. Efficient sharing of GPU resources
An important challenge in HEP computing is the maximal utilization of the available hardware
resources. For most users, it is not feasible to actively use their hardware at all times, leading to
periods of inactivity where other users could utilize the hardware with little additional costs. It
is therefore reasonable to share resources through some sort of scheduling that ensures a fair and
efficient distribution to the individual users. HTCondor [8] is commonly used in HEP computing
and is also installed on the TOpAS cluster mention above. The application and its requirements
set by the user are referred to as job, and the assigned hardware resources are referred to as one
or more job slots.
Multiple jobs are often executed on the same machine simultaneously to achieve maximum
throughput. In order to hold users accountable and protect different jobs from each other, a
high degree of isolation between the jobs is necessary. Due to the wide range of different analyses
in HEP, the hardware requirements of the jobs also vary significantly. As a result, the boundaries
between jobs have to be flexible and stable at the same time. Most hardware resources, like
RAM, scratch space or the amount of assigned CPU cores, have a fine enough granularity to be
distributed without problems. On the other hand, GPUs are typically not dividable and have
to be assigned as a whole.
A whole GPU might be assigned to a job, even if the job is only capable of using a fraction
of the GPUs computational capacity. This can lead to significant inefficiencies in the use of
costly hardware resources. There are multiple options to approach this issue, the first being
to assign the same GPU to more than one job. Due to recent advancements, such jobs are
unlikely to interfere with each other as long as none of them exceed their assigned GPU usage.
Unfortunately, it is unrealistic to assume that there will be no failing jobs. An insufficient
isolation between jobs could then lead to multiple jobs failing together because one of them
exhausted the GPUs capacity. In addition, it is difficult to monitor the resource usage of a
specific job on a shared GPU, making it difficult to investigate issue.
A second option is to rely on features like NVIDIA’s MIG service [9]. The service requires
minimal setup and allows one GPU to be separated into multiple instances that each possess
a fraction of the original resources and otherwise behave like a separate GPU. Figure 1 shows
the minimal building blocks from which the MIG instances of an NVIDIA A100 GPU can be
created. A GPU is somewhat limited in how it can be divided, and a full list of the possible
setups for the available GPUs with MIG support can be found at [10]. The resulting MIG
instances are isolated on a hardware layer, providing strong protection between the processes on
different MIG instances of a GPU. HTCondor can register each of these instances as individual
GPUs, each providing a slot for a potential GPU job. For an NVIDIA A100 GPU this means,



that with the help of the MIG service, one GPU can be turned into up to seven instances that
each act like a smaller GPU.
In an optimal case, this approach could lead to an increase in GPU utilization by a factor of
seven.

5GB

1CS 1CS

5GB 5GB 5GB 5GB 5GB5GB 5GB

1CS 1CS 1CS 1CS1CS

Device memory

Compute slices

Figure 1. Sketch of the MIG building blocks
of an NVIDIA A100 GPU. Each MIG instance
consists of one or more compute slices (CS) and
one or more slices of device memory with a
size of 5 GB. One CS is reserved for the MIG
overhead.

0 50 100 150
Runtime in minutes

2 CPU

12 CPU
2 CPU +

1 full GPU
2 CPU +

1 GPU-CS

Figure 2. Benchmark of an ML task with
varying amounts of hardware resources
available to the training.

3. Viability check and performance benchmarks
To test the viability of the MIG service in combination with HTCondor two benchmarks were
performed. The first one was to determine how the reduction in available GPU resources would
impact an ML job with an otherwise low GPU utilization. The second benchmark was intended
to simulate the impact of this approach on a filled queue of suitable ML jobs. The workload
for both of these benchmarks consists of a sequential training of a feed forward fully connected
neural networks (NN) with four hidden layers and 512 nodes per hidden layer. The trainings
utilized O(106) training samples and a batch size of 512. All trainings were performed on
the same machine, with varying degrees of the machine’s hardware available to an individual
training. The CPUs used were two AMD EPYC 7662 64-Core and there were eight NVIDIA
A100 GPUs installed in the machine. Available scratch space and RAM were set high enough
to not inhibit the training tasks. All trainings were performed using TensorFlow 2 [11] and the
code was adapted to allow the utilization of GPU if such a resource was available to the training.

3.1. Hardware based performance comparison
In the first benchmark, all jobs had the exact same workload, including random seeds, to ensure
that the results would only depend on the hardware available to the job. As a baseline, the
training was first performed, using two of the CPU cores and no GPU resources. Next, the
training was performed using 12 of the CPU cores instead, still with no GPU resources. In the
third run, the number of CPU cores was again reduced to two and one NVIDIA A100 GPU was
assigned to the training. In the final run of this benchmark, the NVIDIA A100 GPU was set up
as seven MIG instances, each with the smallest possible size. Each MIG instance consisted of
one compute slice (CS) with roughly one eighth of the GPU’s processing power and one 5 GB
slice of device memory. The number of CPU cores was kept at two per job, and one of the seven
instances was assigned to the training. The results of this benchmark can be seen in figure 2.
The benchmark shows that even a fraction of an NVIDIA A100 GPU provides more resources to
the training than 12 CPU cores do, and that these additional resources can be utilized, even for
a relatively simple NN. The runtime with the full GPU is about 5% faster than the runtime with



Table 1. Summary of the scaling benchmark results. ”1g.5gb” is the name set by MIG for a
MIG instance with one compute slice and 5 GB of VRAM. Total runtime is the time it took
from the start of the first job until the completion of all 414 ML jobs.

Configuration # slots VRAM per GPU Total runtime in minutes

Full NVIDIA A100 GPUs 8 40 GB 594
1g.5gb MIG instances 56 5 GB 77

the MIG instance. This is a small difference considering that the training with the full GPU
had access to eight times the GPU resources compared to the training with the MIG instance.
This result is understandable, considering that the training with the full GPU only utilized it
to about 15% of its maximum compute capacity.

3.2. Scaling benchmark
After the first benchmark confirmed, that the general approach of using the MIG service to divide
a GPU into smaller pieces can be used in conjunction with HTCondor, the second benchmark
was intended to test its scalability. By providing a large amount of similar, but not identical,
ML jobs, a filled batch job queue has been simulated. While all trainings in this benchmark used
the same NN architecture, there were differences in the amount and distribution of the input
data. A total of 414 jobs entered into the HTCondor job queue. All eight NVIDIA A100 GPUs
of the machine were used in this benchmark. In the first iteration, the GPUs were used as is,
providing eight job slots. In the second, each GPU was split into seven MIG instances with one
CS and 5 GB of device memory each, resulting in a total of 56 job slots. In both cases, each job
was assigned two CPU cores. The result of this benchmark can be seen in table 1.
During the runtime of the trainings, an average of seven times as many jobs were running with
the MIG setup than with the whole GPU setup. This is also visible in the speedup of the total
runtime. While the overall runtime depends on the length of each individual job and the number
of simultaneous jobs, it also depends on the efficiency of the job scheduler, which is difficult to
quantify exactly in this benchmark, due to a high variety in the runtime of the individual jobs.
Nonetheless, the benchmark provides a clear picture of the possible benefit that can be gained
from utilizing a technology like the MIG service.

4. Caveats and outlook
The MIG service is a technology with the potential to greatly benefit the sharing of GPU re-
sources in HEP computing. It is new and in active development. While this means that there is
hope for improvements to certain issues, it also means that it is not stable, yet, and changes to
some core aspects have to be expected. As of writing, there are three GPU models that support
MIG, the A100, the A30 and the H100 NVIDIA [12] GPUs. Older hardware and hardware from
other manufacturers are not supported. This means that most current GPUs utilized in HEP
computing are unable to use MIG at all.
There has been considerable development of the MIG service and its supporting software be-
tween the initial benchmarks and the writing of this paper, and a number of issues have been
reduced. It is now possible to obtain the monitoring data of specific MIG instances by using the
NVIDIA Data Center GPU Manager (DCGM) [13]. This is a crucial step towards the usage of
the MIG service in cluster environments.
It is possible to create MIG instances as long as there is space on the host GPU, and they can be
destroyed as long as no process is using them at a given moment. This provides a great degree



of freedom to dynamically manage GPU resources. It appears realistic, that the MIG service
could be set up in a way that creates MIG instances of specific sizes, depending on the job re-
quirements of the queued jobs in a batch system. Such a setup would reduce wasted computing
resources for GPU jobs that do not fully occupy a whole GPU by placing multiple jobs on the
same GPU well isolated from each other. After such a job is completed, the used instance could
be removed and reused for the following job.
Due to the way that the MIG instance slots are set up, certain combinations are only possible
in specific order. E.g., three instances with 4/2/1 CS can exist at the same time, but only if the
instance with four CS is set up first. This could limit how well GPU jobs, that require more
than the minimal amount of GPU resources, fit together with already existing jobs.

5. Conclusion
The Multi Instance GPU (MIG) service allows a GPU to be divided into multiple instances. The
standout feature of this service is its high isolation between the individual instances. Monitoring
of the instances is possible using the NVIDIA Data Center GPU Manager (DCGM) and creation
as well as destruction of the instances can be performed dynamically.
The compatibility of this service with the software HTCondor was benchmarked using the
TOpAS Tier 3 cluster, and an ideal usage scenario was explored. In this scenario, a filled
batch queue of ideal jobs was simulated. A throughput increase of up to seven was observed by
reaching a higher number of simultaneously running jobs.
The implementation of an HTCondor setup that is able to dynamically allocate GPU resources
in the form of MIG instances of a requested size has been discussed and seems feasible.

References
[1] Evans L, Bryant P. LHC Machine. Journal of Instrumentation. 2008 August;3(08):S08001. Available from:

https://dx.doi.org/10.1088/1748-0221/3/08/S08001.
[2] Chatrchyan S, et al. The CMS Experiment at the CERN LHC. JINST. 2008;3:S08004.
[3] Shiers J. The Worldwide LHC Computing Grid (worldwide LCG). Computer Physics Communications.

2007;177(1):219-23. Proceedings of the Conference on Computational Physics 2006. Available from:
https://www.sciencedirect.com/science/article/pii/S001046550700077X.

[4] CMS Offline Software and Computing. CMS Phase-2 Computing Model: Update Document. Geneva: CERN;
2022. Available from: https://cds.cern.ch/record/2815292.

[5] Caspart, René, Fischer, Max, Giffels, Manuel, von Cube, Ralf Florian, Heidecker, Christoph, Kuehn, Eileen,
et al. Setup and commissioning of a high-throughput analysis cluster. EPJ Web Conf. 2020;245:07007.
Available from: https://doi.org/10.1051/epjconf/202024507007.

[6] NVIDIA Corporation. NVIDIA Tesla V100 GPU Architecture [Internet]; 2017. WP-08608-001. [Accessed
27th February 2023]. Available from: https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[7] NVIDIA Corporation. NVIDIA A100 Tensor Core GPU Architecture [Internet]; 2020. [Accessed 27th
February 2023]. Available from: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

[8] HTCondor Team. HTCondor. Zenodo; 2023.
[9] NVIDIA Corporation. NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/

multi-instance-gpu;. [Accessed 20th February 2023].
[10] NVIDIA Corporation. NVIDIA Multi-Instance GPU User Guide, Supported MIG Profiles. https://

docs.nvidia.com/datacenter/tesla/mig-user-guide/#supported-profiles;. [Accessed 20th February
2023].

[11] TensorFlow Developers. TensorFlow. Zenodo; 2023.
[12] NVIDIA Corporation. NVIDIA H100 Tensor Core GPU Architecture [Internet]; 2022. [Ac-

cessed 27th February 2023]. Available from: https://resources.nvidia.com/en-us-tensor-core/

gtc22-whitepaper-hopper.
[13] NVIDIA Corporation. NVIDIA Data Center GPU Manager. https://github.com/NVIDIA/DCGM;. [Accessed

20th February 2023].

https://dx.doi.org/10.1088/1748-0221/3/08/S08001
https://www.sciencedirect.com/science/article/pii/S001046550700077X
https://cds.cern.ch/record/2815292
https://doi.org/10.1051/epjconf/202024507007
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/en-us/technologies/multi-instance-gpu
https://www.nvidia.com/en-us/technologies/multi-instance-gpu
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#supported-profiles
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#supported-profiles
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://github.com/NVIDIA/DCGM

