
Advancing opportunistic resource management via

simulation

Max Fischer and Eileen Kuehn
Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany

E-mail: max.fischer@kit.edu, eileen.kuehn@kit.edu

Abstract. Modern high energy physics experiments and similar compute intensive fields are
pushing the limits of dedicated grid and cloud infrastructure. In the past years research into
augmenting this dedicated infrastructure by integrating opportunistic resources, i.e. compute
resources temporarily acquired from third party resource providers, has yielded various strategies
to approach this challenge. However, work on this topic is usually driven by practical needs to
use specific resource providers for production workflows; in this context, research is ad hoc and
relies on impressions gained during unique situations of resource providers, resource demand
and opportunistic resource management. Replicating or even preparing a specific situation
to investigate opportunistic resource management is extremely challenging or even impossible.
As a result, thorough research in the field of opportunistic resource management is therefore
extremely limited.

We propose to tackle this challenge using simulation and to this end present the simulation
framework LAPIS, a general purpose scheduling simulator offering programmatic control of
resources. We demonstrate this approach by integrating LAPIS with the COBalD/TARDIS
resource manager to investigate the behaviour of this resource manager in a simulated
environment.

1. Introduction
In order to manage end-user and automated usage of globally distributed compute resources,
large collaborations in the High Energy Physics (HEP) domain rely on using pilot jobs [1] to
form an intermediate scheduling layer. Various workflow management systems (WMS), such as
GlideinWMS [2] or PanDA [3], act as single-point of entry for jobs to predict the demand
for homogeneous grid resources to accurately send out pilot jobs. However, the desire to
opportunistically use non-standard resources such as HPC clusters [4] has led to the development
of dedicated meta-schedulers that solely focus on pilot job scheduling. Strategies for efficient
use of heterogeneous and temporary resources is an active research challenge today.

While multiple implementations of meta-schedulers exist [5, 6] and are used productively,
they are insufficient for scientific research: due to the many actors, participants and systems
involved it is unfeasible to reproduce job loads, resource availability, or generally the environment
in which a meta-scheduler operates. While simulation is an established tool to reproduce even
complex environments, existing meta-scheduler implementations would still expect to interact
with their environment in real-time. In this paper we propose a simulation that also serves as
a runtime for a meta-scheduler itself; as a result, both the meta-scheduler and environment act
on simulated time only which makes meta-scheduling reproducible on a practical time scale.



We present the considerations, implementation and demonstration based on the meta-
scheduler COBalD/TARDIS [7, 8]. While COBalD/TARDIS is somewhat unique in its design
of using a reactive feedback loop instead of demand analysis or prediction, this difference is
incidental; our simulation does not rely on this design and the approach is in principle applicable
to other meta-schedulers.

2. Dissection of a Meta-Scheduler Environment
Though our goal is to simulate meta-scheduling accurately, this does not mean simulating every
single part of a production environment (see Figure 1). Instead, we aim to analyse which parts we
can emulate, simulate or even remove to simplify the simulation without significantly impacting
accuracy. This is vital both for efficiency and to be able to pinpoint which parts trigger which
behaviour.

Critically, a significant part of meta-scheduler programs is glue-code to connect various
external system. The correctness of such components is subject to testing and verification. So
for simulation we assume they work according to specification. As such, whenever two simulated
components interact we can omit their connection layer for efficiency.

As the purpose of meta-scheduling is to acquire and release resources in order to execute jobs
we must simulate this to some degree. However, a meta-scheduler already highly abstracts both
for scalability; in fact COBalD/TARDIS only considers its own pilot jobs but not even end-user
jobs. Matching this abstraction we can consider it sufficient to simulate that jobs and resources
can be started/acquired for some time as well as their status checked. Complexities such as
data transfers, process executions and similar can be omitted. Notably, it is relatively simple to
extend job- and resource simulation with a higher level of detail if desired.

The key component of the environment are the concrete schedulers connecting resources
and jobs. This applies both for predictive meta-schedulers, which must predict decisions of
the schedulers directly, as well as reactive meta-schedulers, which form a coupled system with
schedulers. Still, in practice any meta-scheduler must be robust to not fully knowing the
schedulers, be this for administrative, technical or feasibility reasons. As such, we consider
it most important to simulate classes of schedulers instead of precisely replicating a specific
scheduler implementation.

The core piece of a meta-scheduling environment is the meta-scheduler itself and especially its
decision engine. In order to study its behaviour, we must use the decision engine implementation
with minimal or ideally no modifications. Effectively, this means we must emulate the
environment in which the decision engine executes.

3. The LAPIS simulation approach
The basis for our implementation is the LAPIS simulator [9] which is geared towards scheduling
and resource management simulations. It builds on the Python usim library [10], which provides
discrete-event simulation via Python’s async/await syntax. This makes it possible to extend
async programs with resource simulation.

The simulator provides building blocks of a batch system: a job queue, worker nodes and
scheduler. Both jobs and workers are modelled as continuous blocks of resources, with each
running job blocking its resources on the worker node while running. The scheduler is priority
based, matching jobs to resources in-order as long as possible. This corresponds to a simple
configuration of the HTCondor [11] batch system commonly used in HEP.

LAPIS is intended to be used as a library to build a simulation programmatically and, as such,
is highly extensible. For example, it has been used to study cache locality based scheduling [12]
by introducing caches and cache-aware schedulers. We can similarly extend LAPIS to run
COBalD/TARDIS itself alongside its simulated batch systems.



Figure 1. Schematic environment of
the COBalD/TARDIS meta-scheduler
in production: Each meta-scheduler
instance is a self-contained program that
only interacts with third-party resource
providers and an overlay batch system
(OBS). The resource provider is used to
spawn pilot jobs – called ”drones” in
COBalD/TARDIS - that serve as worker
nodes to the OBS. By monitoring which
resources the OBS scheduler uses, the
meta-scheduler gets feedback of which
resources it must provide more or less.

Figure 2. Simulated environment of the
COBalD/TARDIS meta-scheduler: Simu-
lation provides a simplified replica of an
overlay batch system, including jobs, re-
sources and scheduler but not the execution
of actual work. In contrast, the provision-
ing of resources is closely modeled to match
the abstraction level used by the meta-
scheduler and includes one or more fully
functional instances of COBalD/TARDIS.

To hook the simulated resources to COBalD/TARDIS, we have implemented a simulated
resource interface which directly fits the resource abstraction of the meta-scheduler. This
interface directly creates or destroys a worker, with the possibility to limit the maximum resource
volume available. In addition, we have implemented a minimal emulation of the Python asyncio

library based on usim. As the COBalD/TARDIS decision engine only interacts with the resource
interface and asyncio, this allows us to run it completely inside LAPIS (see Figure 2).

4. Meta-scheduling example study
To verify and demonstrate our simulation approach, we have chosen a conceptually simple but
practically complex use-case. In short, we run multiple meta-scheduler instances to serve the
same pilot job infrastructure and job scheduler. This requires the meta-schedulers to implicitly
or explicitly cooperate as their decisions affect one another via the shared pilot infrastructure.
Notably, COBalD/TARDIS has no mechanism for meta-scheduler instances to communicate and
the simulation also ensures this even though all instances run as part of the same simulation
program.

For the specific scenario, we have recorded jobs submitted to a Tier 3 batch system. The
resource requests are homogeneous but the submission time and runtime are irregular. Three
meta-scheduler instances are used, each setup to create resource of only a specific size: The first
size matches the memory to CPU ratio of jobs, but is too large for one job yet too small for
multiple jobs. The second size matches the CPU request of jobs, but has too much memory. The
third size matches the memory to CPU ratio of jobs, but requires multiple jobs to be completely
filled. With this scenario, our goal is to study how the group of meta-schedulers react to the job
requests that do not fit any single one perfectly.

We directly use the regular monitoring stream of COBalD/TARDIS to track how many
resources each instance provides (see Figure 3) during the simulation. The resource volume is
sufficient to see the general behaviour, so we purposely exclude more complicated metrics that
are not required for this simple scenario. The meta-scheduler instances and simulation still



Figure 3. Resources provided by
multiple meta-scheduler instances
during simulated resource usage:
Each resource pool is managed by
one instance of COBalD/TARDIS
and includes only resources of ex-
actly the same size. The simu-
lated time corresponds to seconds
and a resource unit corresponds
to the increment of resources in
a pool. The data was read from
the COBalD/TARDIS monitoring
stream during a simulated scenario
of gradually inserting jobs.

generate this data and one could use them for an in-depth or follow-up simulation study. In
addition, we specifically look only at the initial ramp-up of resources, which should be the most
insightful even for people not familiar with different meta-scheduler architectures and challenges.

Right after the simulation starts, we observe that all instances equally increase their provided
resources. This is due to the feedback mechanism employed by COBalD/TARDIS, which requires
having some resources available to probe whether the scheduler finds them suitable for jobs.
While this phase mainly serves as a sanity check here, it is an open area of research how to more
efficiently probe a wide array of resource types without having resources idle.

The first interesting phase is up until 5 minutes (300 seconds) during which the number of
jobs is still low. There are still too few jobs to significantly fill large resources (Pool 2) and jobs
are not a good fit for high-memory resources (Pool 1). Consequently, the small resources (Pool
0) are the best utilised and its meta-scheduler instance provides more resources.

This behaviour gets inverted in the second phase starting at 8 minutes (480 seconds) as the
job number increases steadily. Now there are sufficient jobs to fill large resources (Pool 2) as
well, which makes these resources more suitable than smaller ones (Pool 0) which have leftover
resources after matching one job each. We see the group of meta-schedulers acting as desired
here as the most suitable resources for high job pressure (Pool 2) now increase considerably to
handle the increasing job load.

The simulation reveals a third phase starting at around 30 minutes (1800 seconds) that we
did not anticipate. Here, the configured exponential scale-up of resources means that the most
suitable resources (Pool 2) become significantly unused as the meta-scheduler increases provided
resources too much at once. As a result, what we expected to be the least suitable resources
(Pool 1) become competitive and their respective meta-scheduler increases resource volume as
well.

Overall, even this simple scenario already demonstrates the emergent behaviour of running
multiple meta-scheduler instances. In addition to the expected behaviour of scaling up resources
selected with matching memory to CPU ratio, the scenario shows unexpected effects of how a
suboptimal scaling strategy allows other resources to increase. Simulation allows us to observe
these effects in a controlled environment, and in the future to repeat them to improve meta-
scheduling strategies.

5. Conclusion and Outlook
By its very nature, meta-scheduling is a complex task that is quite removed from everyday
experience. In addition to this inherent difficulty, research is further hindered by the unfeasibility



of reproducing and studying specific scenarios in deployed systems. In order to tackle the
challenge of reproducibility, in this paper we have proposed and demonstrated a simulation
based approach.

By carefully separating functional from incidental parts of a meta-scheduler, creating such a
simulation is a feasible task even with limited manpower. This has allowed us to integrate the
actual decision engine of a meta-scheduler application into a completely simulated job scheduling
and resource acquisition scenario.

Such a simulation setup allows to reproduce observed scenarios or synthetic ones. This can
be used to, for example, try different approaches for the same situation or check whether an
approach would handle more difficult situations as well. Even a simple scenario can reveal
complex emergent behaviour as multiple components work together, as shown in this paper.
Simulation allows to study all of these situations safely and precisely.

The simulation and study shown in this paper provide a solid foundation for future work
on meta-scheduling strategies. As hinted at in our example simulation, the probing phase
when COBalD/TARDIS provisions resources purely to monitor them is an interesting target
for optimisations. This phase is currently the limiting factor to using many meta-scheduler
instances for handling different resource types; finding a better strategy for this phase would
allow scaling up the number of different resources without loss of efficiency. In addition, we
want to study and optimise the resource scaling behaviour at large resource volumes at which
point our current strategy lacks granularity.

In addition to improving current meta-scheduling strategies, we are also looking into
improving the simulation itself. Obvious areas are improving the accuracy of the simulation, as
we are for example already looking into more closely replicating the HTCondor scheduler but
also other kinds of scheduler. Finally, while our various simplifications to noise factors, such
as ignoring latency and unreliability of communication between parts, are based on our own
experience we would like to verify these by dedicated high-detail simulations as well.

References
[1] M. Turilli, M. Santcroos, S. Jha 2018 ”A Comprehensive Perspective on Pilot-Job Systems” ACM Comput.

Surv. 51,2 43 doi:10.1145/3177851
[2] I. Sfiligoi, et al 2009 ”The Pilot Way to Grid Resources Using glideinWMS” WRI World Congress on

Computer Science and Information Engineering doi:10.1109/CSIE.2009.950
[3] P. Nilsson, et al. ”The PanDA System in the ATLAS Experiment” Proceedings of XII Advanced Computing

and Analysis Techniques in Physics Research (2008) doi:10.22323/1.070.0027
[4] J. Adelman-McCarthy, et al 2023 ”Extending the distributed computing infrastructure of the CMS

experiment with HPC resources” J. Phys.: Conf. Ser. 2438 012039 doi:10.1088/1742-6596/2438/1/012039
[5] P. Mhashilkar, et al 2019 ”HEPCloud, an Elastic Hybrid HEP Facility using an Intelligent Decision Support

System” EPJ Web Conf. 214 03060 doi:10.1051/epjconf/201921403060
[6] P. Marshall, K. Keahey and T. Freeman 2010 ”Elastic Site: Using Clouds to Elastically Extend Site

Resources” 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing 43-52
doi:10.1109/CCGRID.2010.80

[7] M. Fischer, et al 2020 ”Lightweight dynamic integration of opportunistic resources” EPJ Web Conf. 245
07040 doi:10.1051/epjconf/202024507038

[8] M. Giffels, et al 2020 ”Effective Dynamic Integration and Utilization of Heterogenous Compute Resources”
EPJ Web Conf. 245 07038 doi:10.1051/epjconf/202024507038

[9] E. Kuehn, T. Fesenbecker, M. Fischer, S. Lange, M. Schnepf 2020 ”MatterMiners/lapis: v0.4.1 (v0.4.1).
Zenodo.” doi:10.5281/zenodo.3822378

[10] M. Fischer, E. Kuehn 2020 ”MaineKuehn/usim: µSim - Simply Simulate (v0.4.3). Zenodo.”
doi:10.5281/zenodo.3813587

[11] D. Thain, T. Tannenbaum, M. Livny 2005 ”Distributed Computing in Practice: the Condor Experience”
Concurrency and Computation: Practice and Experience 17 323–356 doi:10.1002/cpe.938

[12] T. Feßenbecker 2020 ”Modeling of distributed coordinated caching for LHC data analyses” MSc Thesis


