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Abstract. About 90% of the computing resources available to the LHCb experiment has
been spent to produce simulated data samples for Run 2 of the Large Hadron Collider at
CERN. The upgraded LHCb detector will be able to collect larger data samples, requiring
many more simulated events to analyze the data to be collected in Run 3. Simulation is
a key necessity of analysis to interpret signal vs background and measure efficiencies. The
needed simulation will far exceed the pledged resources, requiring an evolution in technologies
and techniques to produce these simulated data samples. In this contribution, we discuss
Lamarr, a Gaudi-based framework to speed-up the simulation production parametrizing
both the detector response and the reconstruction algorithms of the LHCb experiment. Deep
Generative Models powered by several algorithms and strategies are employed to effectively
parametrize the high-level response of the single components of the LHCb detector, encoding
within neural networks the experimental errors and uncertainties introduced in the detection
and reconstruction phases. Where possible, models are trained directly on real data, statistically
subtracting any background components through weights application. Embedding Lamarr in
the general LHCb Gauss Simulation framework allows to combine its execution with any of
the available generators in a seamless way. The resulting software package enables a simulation
process completely independent of the Detailed Simulation used to date.

1. Introduction
The LHCb detector [1, 2], originally designed to study particles containing b and c quarks
produced at the Large Hadron Collider (LHC), is a single-arm forward spectrometer covering
the pseudorapidity range 2 < η < 5. The detector includes a high-precision tracking system
providing measurements of the momentum p of charged particles and the minimum distance of
a track to a primary vertex (PV), namely the impact parameter (IP). LHCb is also equipped
with a highly performing particle identification (PID) system capable of distinguishing photons,
electrons, long-lived hadrons, and muons, combining the response of two ring-imaging Cherenkov
(RICH) detectors, the calorimeter system, and the MUON system.

The simulation of high-energy collisions, of the decays of the generated particles, and of the
physics processes occurring within the detector by the decay products are a key necessity of
analysis, typically for separating the signal from background sources or for efficiency studies.
The simulation software of the LHCb experiment is built upon two main projects named Gauss
and Boole [3], both based on the Gaudi framework [4]. The Gauss framework implements



the so-called generation and simulation phases, while the Boole application is responsible for
the digitization phase. The first step of any simulation production is the generation phase in
which the high-energy collisions are simulated with Monte Carlo generators such as Pythia8 [5]
and EvtGen [6]. The output of the generation phase is the set of long-lived particles able to
traverse partially or entirely, depending on the particle species, the LHCb spectrometer. The
radiation-matter interactions occurring within the detector by the traversing long-lived particles
are reproduced during the simulation phase that aims to compute the energy deposited in the
active volumes relying on Geant4 [7]. Lastly, during the digitization phase, the energy deposits
are converted into raw data mimicking the data format used in the LHCb Data Acquisition
pipeline.

During the LHC Run 2, the simulation of physics events at LHCb has taken more than 80%
of the distributed computing resources available to the experiment, namely the pledged CPU
time. The experiment has just resumed data taking after a major upgrade and will operate
with higher luminosity and trigger rates collecting data samples at least one order of magnitude
larger than in the previous LHC runs. Meeting the foreseen needs in Run 3 conditions using only
the traditional strategy for simulation, namely detailed simulation, will far exceed the pledged
resources. Hence, the LHCb Collaboration is making great efforts to modernize the simulation
software stack [8, 9] and develop novel and faster simulation options [10, 11, 12, 13, 14].

2. The fast and ultra-fast simulation paradigms
The detailed simulation of the dynamics of the hadron collisions and the interaction of all
primary and secondary particles with the detector materials is extremely expensive in terms of
CPU time. It is therefore no surprise that the computation of energy deposits performed by
Geant4 consumes more than 90% of the CPU resources spent by LHCb for simulation.

Several strategies have been developed to reduce the computational cost of the simulation
phase based on resampling techniques [15] or parameterizations of energy deposits [10, 12, 13].
These options offer cheaper alternative solutions to reproduce the low-level response of the LHCb
detector and are typically named fast simulation strategies. The fast simulation options do not
modify the traditional data processing flow described in Figure 1 (top), but rather allow to speed
up the simulation phase up to a factor 20 with respect to the detailed simulation.

A more radical approach is the one followed by the ultra-fast simulation strategies which
aim to parameterize directly the high-level response of the LHCb detector [11, 14]. The core
idea is to develop parameterizations able to transform generator-level particles information
into reconstructed physics objects as schematically represented in Figure 1 (bottom). Such
parameterizations can be built using deep generative models that have proven to succeed in
describing the response of the LHCb detector at different levels [16] and in offering reliable
synthetic simulated samples [17, 18].

Figure 1. Schematic representation
of the data processing flow in detailed
and fast simulation (top), and in
ultra-fast simulation (bottom).



3. Lamarr and its machine-learning-based parameterizations
Lamarr [14] is a novel LHCb simulation framework implementing the ultra-fast simulation
paradigm. The Lamarr framework consists of a pipeline of modular parameterizations designed
to take as input the particles generated by the event generators and provide as output high-level
quantities representing the particles successfully reconstructed by LHCb. Lamarr is integrated
with Gauss and disposes of a dedicated interface to the physics generators for selecting those
particles that need to be propagated through the detector, splitting them into charged and
neutral particles. The remainder of this document is devoted to discuss the implementation
(this Section) and validation (Section 4) of the pipeline currently provided by Lamarr for
charged particles.

Most of the parameterizations used by Lamarr rely on machine learning algorithms that we
can split into two main classes. The first class of models uses Gradient Boosted Decision Trees
(GBDT) to parameterize efficiencies learning the fraction of candidates that are in acceptance,
that have been successfully reconstructed or that have been selected as muons. The second
family of parameterizations is made up of Generative Adversarial Networks (GAN) [19] trained
to reproduce the distributions of high-level physics quantities, typically conditioned [20] by the
kinematics of the particles traversing a specific LHCb sub-detector. Additional algorithms to
define detector parameterizations are being explored, but currently are not part of the Lamarr
pipeline [21, 22].

Once taken the charged particles from physics generators, the first step performed by Lamarr
is their propagation through the magnetic field following a trajectory approximated as two
rectilinear segments with a single point of deflection (single pT kick approximation). Then, the
tracking acceptance and reconstruction efficiency are computed using GBDT models trained
taking as input geometrical and kinematic features of the track. The resulting tracks still have
information at generator-level. The promotion to high-level quantities, namely the application
of the resolution effects due to, for example, multiple scattering phenomena, is carried out
by GAN systems trained with binary cross-entropy as loss function and equipped with skip
connections [23]. A similar GAN-based architecture is used to provide the correlation matrix
obtained from the Kalman filter adopted in the reconstruction algorithm to define the position,
slope and curvature of each track.

The LHCb PID system is parameterized using GAN-based models. The high-level response
of the RICH and MUON systems are reproduced using the particles kinematic information
provided by the Lamarr tracking modules and a description of the detector occupancy, for
example based on the total number of tracks traversing the detector. The loss function adopted
to train the PID-GAN models is the Wasserstein distance where the Lipschitz constraint on
the discriminator is enforced explicitly using a method called Adversarial Lipschitz Penalty
(ALP) regularization [24], resulting in WGAN-ALP models. GlobalPID classifiers, obtained
in real data by combining RICH and MUON responses with information from the calorimeter
system and features of the reconstructed tracks, are parameterized using similar GAN-based
architectures that take as input what produced by the RICH-GAN and MUON-GAN models.
Lastly, the efficiency of a binary muon-identification criterion, available since the earlier stage
of data processing via a FPGA-based implementation, is parameterized with GBDT models.

Combining stacks of GBDT and GAN models, Lamarr provides the high-level response of
the LHCb tracking and PID systems. To validate the ultra-fast simulation approach adopted
machine-learning-based models are trained on detailed simulated samples and the output of
Lamarr is compared to the reference distributions as described in Section 4. An extension of
the training procedure allows to train the PID models directly on real data (in particular on
calibration samples [25]), statistically subtracting any background components through weights
application [26]. The trained models are deployed through a transcompilation approach using
the scikinC toolkit and dynamically linked to the Gauss application to ease the development



and prototyping of new parameterizations [27].

4. Validation campaigns powered by Λ0
b → Λ+

c µ
−ν̄µ decays

As mentioned in the previous Section, the validation of the ultra-fast philosophy of Lamarr is
based on the comparison between the distributions obtained from models trained on detailed
simulation and the ones resulting from standard simulation strategies. In particular, we discuss
here the validation studies performed using simulated Λ0

b → Λ+
c µ

−ν̄µ decays with Λ+
c → pK−π+.

We are dealing with a semileptonic Λ0
b decay whose dynamics is not trivial and needs a faithful

reproduction, highlighting the importance of interfacing to dedicated generators, in this case
EvtGen. This decay channel is being widely studied by LHCb, at the point that it is part
of the calibration samples designed to provide data-driven corrections to the simulated PID
efficiencies for proton candidates [25]. Interestingly, this Λ0

b decay includes in its final state the
four charged particle species parameterized in the current version of Lamarr, namely muons,
protons, kaons and pions.

The validation of Lamarr tracking modules is reported in Figure 2 (top) where a comparison
between the distributions of the proton impact parameter χ2 (top left) and of the Λ+

c invariant
mass (top right) are shown. IP χ2 represents a measure of the inconsistency of the proton
track with the PV obtained executing the same analysis algorithm both on Lamarr output and
detailed simulated samples. The agreement between the two invariant mass distributions proves
that the decay dynamics is well reproduced and the resolution effects correctly parameterized. To
show the performance of the Lamarr PID parameterizations, the distribution of the Combined
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Figure 2. Validation plots for Λ0
b → Λ+

c µ
−ν̄µ decays with Λ+

c → pK−π+ simulated with
Pythia8, EvtGen and Lamarr (orange markers) and compared with detailed simulation
samples relying on Pythia8, EvtGen and Geant4 (cyan shaded histogram). Reproduced
from LHCB-FIGURE-2022-014.

https://cds.cern.ch/record/2814081


Differential Log-Likelihood (CombDLL) between the proton hypothesis and the kaon one on
proton tracks is reported in Figure 2 (bottom left) against what expected from detailed simulated
samples. A comparison between the selection efficiencies for a tight requirement on proton
identification against pion hypothesis (bottom right) is also shown in Figure 2 (bottom right).

5. Conclusion
Developing new simulation techniques is an unavoidable requirement for LHCb to tackle the
demand for simulated samples expected for Run 3 and those will follow. The ultra-fast simulation
approach is a viable solution to reduce the pressure on pledged CPU resources and succeeds in
describing the uncertainties introduced in the detection and reconstruction steps through the
use of deep generative models. Such parameterization are provided to the LHCb software stack
via the novel Lamarr framework, in which statistical models for tracking and charged particle
identification have been deployed and validated with satisfactory results on Λ0

b → Λ+
c µ

−ν̄µ
decays. Preliminary studies show that Lamarr is able to speed up the simulation production
up to a factor 1000 with respect to detailed simulation [14]. Improvements on the quality
of the parameterizations currently provided have been planned, relying on intense optimization
campaigns on distributed computing resources [28]. Further development of the neutral particles
pipeline is one of the major ongoing activities with the purpose of enhancing the variety of physics
analyses that can benefits from Lamarr.
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