
Development of a lightweight database interface for

accessing JUNO conditions and parameters data

Tao Lin1 (on behalf of the JUNO collaboration)
1 IHEP

E-mail: lintao@ihep.ac.cn

Abstract.
The Jiangmen Underground Neutrino Observatory (JUNO) has a very rich physics program

which primarily aims to the determination of the neutrino mass ordering and to the precisely
measurement of oscillation parameters. It is under construction in South China at a depth
of about 700 m underground. As data taking will start in 2024, a complete data processing
chain is developed before the data taking. Conditions and parameters data, as non-event data,
are one of important parts in the data processing chain, which are used by reconstruction and
simulation. These data could be accessed via Frontier on JUNO-DCI (Distributed Computing
Infrastructure), or via databases, such as MySQL and SQLite in local clusters.

In this contribution, the latest development of a lightweight database interface (DBI) for
JUNO conditions and parameters data management system will be shown. This interface
provides a unified method to access data from different backends, such as Frontier, MySQL and
SQLite: production jobs could run on JUNO-DCI with Frontier; testing jobs could run in a local
cluster with MySQL to validate the conditions and parameters data; fast reconstruction could
run in a DAQ environment onsite using SQLite without any connections to remote database.
Modern C++ template techniques are used in DBI: extension of a new backend is defined by a
simple struct with two methods doConnect and doQuery; result sets are binding to std::tuple

and the types of all the elements are known at compile-time. Finally, DBI is used by high-level
user interfaces: data models in the database are mapping to normal C++ classes, so that users
could access these objects without knowing DBI.

1. Introduction
The Jiangmen Underground Neutrino Observatory (JUNO) experiment [1] has a rich physics
program, including the determination of the neutrino mass ordering, precise measurement of
neutrino oscillation parameters, detecting neutrinos from reactor, atmosphere, solar, supernova
burst, etc [2, 3]. JUNO is under construction in southern China at a depth of about 700 m
underground. It is expected to start data-taking in 2024, running for more than 30 years.

As shown in Figure 1, the JUNO detector consists of a central detector, a water Cherenkov
detector, and a top tracker. The innermost part is the central detector with an acrylic spherical
vessel filled with 20 kton liquid scintillator (LS), equipped with 17,612 20-inch photomultiplier
tubes (LPMT) and 25,600 3-inch photomultiplier tubes (SPMT). The central detector is
submerged in a water pool, equipped with 2,400 LPMTs, which is the water Cherenkov detector
to detect cosmic ray muons. On the top of the water pool, the top tracker is also used to measure
the muons.

Acrylic spherical
vessel filled with
liquid scintillator

Water pool

Top tracker and
calibration house

Earth magnetic
field compensation

coils

Photo-multiplier
tubes

Acrylic
supporting nodes

Figure 1. Schematic view of the JUNO detector

The data processing flow is described as follows. Waveforms from PMTs are read out and
then processed with Online Event Classification (OEC) with fast reconstruction and classification
algorithms by the DAQ servers. Instead of discarding events, OEC will keep all the events and
decide whether to save the raw waveforms or not, so that the data volume could be reduced.
Then the raw data are transferred to the IHEP computing center with a dedicated network.
When the data arrives, the data quality monitoring (DQM) system starts to reconstruct the
data. In order to reduce the latency and show the data quality promptly, only parts of the
data will be processed. Meanwhile, the raw data are processed with a system called keep-up
production (KUP). All the data are processed in a dedicated computer cluster with 5,000 CPU
cores. The calibration constants used in KUP are not the latest. After the calibration experts
update the calibration constants for all the data, the latest calibration constants are then used in
physics production (PP). All data are processed again with the latest calibration constants in a
DIRAC based distributed computing system, the so-called JUNO-DCI (Distributed Computing
Infrastructure) [4].

2. Motivation and design
The metadata and payloads of calibration constants and parameters are stored separately in
the current design [5]. When accessing the calibration constants and parameters, the metadata
is queried first, and then these data are read from the file system. The metadata are stored in
a MySQL database [6] and distributed by the frontier distributed database caching system [7].
The payloads are distributed by the CVMFS [8]. However, there are some special use cases.
As the OEC runs on the DAQ servers onsite, the calibration constants can not be accessed
remotely. SQLite database [9] is adopted in such cases. The SQLite database is a regular file,
which is easy to copy to the DAQ servers. The necessary constants are dumped from the official
database and then saved in the SQLite database. Another case is used for the validation of
calibration constants by calibration experts. When the calibration experts produce a new set of
constants, these constants need to be validated before being published in the frontier system.
That requires the availability of these metadata in the MySQL database.

In order to support the accessing of multiple database backends, including frontier, MySQL,
and SQLite in different use cases, a unified method is necessary to avoid duplication and improve
the maintenance of the source code. A lightweight database interface (DBI) [10] has been
designed and implemented in JUNO offline software (JUNOSW) [11]. It consists of a low-

level database API (DBAPI) and high-level applications within the SNiPER framework [12], as
shown in Figure 2. Modern C++ template is used to implement the DBAPI, allowing users
to use different database backends and customize the types at compile time. A service named
DBISvc is developed to manage and configure the DBAPI instances using a YAML file [13]. High-
level applications, named CondDB and ParaDB, have been also developed on top of DBAPI to
access the metadata of conditions and parameter data respectively. These applications retrieve
DBAPI instances from the DBISvc. They are then used by the clients, such as MCParamSvc

and PMTCalibSvc. After getting the metadata, these clients read the payloads according to the
paths in the metadata.

Figure 2. Design of the DBI in JUNOSW

3. Implementation of DBAPI
The DBAPI is a header-only, modern C++ library to access databases with different backends.
It contains a unified user interface and several database backend classes.

The class named DBAPI is the user interface to execute SQL queries. The queries are actually
executed by another class, named the backend class, which is implemented with the underlying
database APIs. The C++ templates are used to avoid any inheritance for the database backend
classes, so adding a normal C++ class could extend the backend. The normal class needs two
methods: one is doConnect to setup a connection to the database; another is doQuery to execute
an SQL statement and return the results with many rows. A class named ResultSet is used to
store the results in one row, which uses std::string to represent each field. For example,
several native C-APIs of MySQL [14] are used to implement a MySQL database backend:
mysql real query is used to execute the SQL statement; mysql store result is then used
to store all the results; then, mysql fetch row is used to get results in one row and put them
in ResultSet. After getting the results, the DBAPI instance is responsible to convert the results
into user-defined types. The std::tuple is used to contain these values with different types.
The ResultSet object implements a template method to convert each element to the correct
type. Following is a code snippet of ResultSet:

struct ResultSet {

template <typename ... Args >

bool to(std::tuple <Args ...>& result) const {

typedef typename std::tuple <Args...> TupleT;

if (m_internals.size() != std:: tuple_size_v <TupleT >) {

return false;

}

tuple_element_helper <

std:: tuple_size_v <TupleT >, 0>(

m_internals , result);

return true;

};

std::vector <std::string > m_internals;

};

All of the types need to be decided at compile time and the check of types is done by the
compiler. The following shows an example of executing queries using frontier:

dbi:: FrontierDB frontierdb{url}; // FrontierDB is a backend class

auto dbapi = new dbi::DBAPI(frontierdb); // Creating DBAPI instance

dbapi ->connect ();

using GlobalTag_t = std::tuple <std::string , std::string , std:: string

std::string , std::string >;

for (auto result: dbapi ->query <GlobalTag_t >(stmt_globaltag)) {

auto [sftver , condgtag , paragtag , creator , createtime] = result;

}

However, some data types are already defined as classes instead of std::tuple. To keep
the existing classes unchanged, another query interface is added to use a function to create the
dedicated objects. The following example shows how to use C++ lambda expression to create
the object:

for (auto result: dbapi ->query <GlobalTag >(stmt_globaltag ,

[](std:: string sftver , std:: string condgtag , std:: string paragtag ,

std:: string creator , std:: string createtime) -> GlobalTag {

return GlobalTag{sftver , condgtag , paragtag , creator , createtime };

})) {

// result is a GlobalTag instance

}

4. Applications in JUNOSW
As mentioned in Section 2, there are several layers on top of DBAPI. These components are all
implemented as services in SNiPER.

The DBISvc is responsible to manage a collection of DBAPI instances, which are controlled in
the YAML file. A unique connection name is assigned to each instance and the properties of the
instance could be configured by the key-value pairs. A required property is backend, which is
used by DBISvc to create the corresponding instances. The other properties are used to initialize
the instances, which could be different for different backends. Following example shows several
instances are created with different properties in the YAML file.

connections:

frontier_connection:

backend: frontier

server: http :// put_frontier_server_here :8000/ Frontier

proxy: http :// put_squid_server_here :3128

mysql_connection:

backend: mysql

server: put_mysql_server_here

username: put_username_here

password: put_password_here

sqlite_connection:

backend: sqlite

path: /your/work/path/to/cond_and_para.db

schema_name: OfflineDB

The CondDB and ParaDB use an application name to retrieve the corresponding DBIAPI

instance from the DBISvc. Separating the application name and the connection name makes it
easier to configure different backends for the applications. The current implementation supports
specifying multiple backends for an application, however, only the first backend will be used by
the application. The same backend could be also used by the different applications. Following
example shows that both services use the same frontier connection.

clients:

conddb:

- frontier_connection

paradb:

- frontier_connection

To switch the configurations easily, different YAML files are used in different use cases. One
example is using frontier at different sites. In this case, the proxy of squid servers could be
different. By using the different YAML files for different sites, the data production group could
maintain the site configurations in a modular way. Another example is using SQLite at DAQ
servers onsite. The corresponding backend only needs to specify the path of SQLite file.

5. Conclusions
A lightweight database interface had been implemented in JUNOSW, which is used to support
the different database backends in several use cases during real data processing. Even though
the database accessing could be changed in the future, the current design is still flexible to
meet the requirements. The DBI is open source project on GitHub: https://github.com/

JUNO-collaboration/Database-dbi.

Acknowledgments
This work is supported by National Natural Science Foundation of China (12025502, 11805223),
the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.
XDA10010900), and Youth Innovation Promotion Association, CAS.

References
[1] Djurcic Z et al. (JUNO) 2015 (Preprint 1508.07166)
[2] An F et al. (JUNO) 2016 J. Phys. G43 030401 (Preprint 1507.05613)
[3] Abusleme A et al. (JUNO) 2022 Prog. Part. Nucl. Phys. 123 103927
[4] Zhang X (JUNO) 2020 EPJ Web Conf. 245 03007
[5] Huang X (JUNO) 2020 EPJ Web Conf. 245 04030
[6] MySQL Web Site https://www.mysql.com

[7] Kosyakov S, Kowalkowski J, Litvintsev D, Lueking L, Paterno M, White S P, Autio L, Blumenfeld B J,
Maksimovic P and Mathis M 2004 14th International Conference on Computing in High-Energy and
Nuclear Physics pp 669–672

[8] Blomer J, Buncic P, Charalampidis I, Harutyunyan A, Larsen D and Meusel R 2012 J. Phys. Conf. Ser. 396
052013

[9] SQLite Web Site https://www.sqlite.org

[10] DBI repository https://github.com/JUNO-collaboration/Database-dbi

[11] Huang X, Li T, Zou J, Lin T, Li W, Deng Z and Cao G (JUNO) 2017 PoS ICHEP2016 1051

https://github.com/JUNO-collaboration/Database-dbi
https://github.com/JUNO-collaboration/Database-dbi
1508.07166
1507.05613
https://www.mysql.com
https://www.sqlite.org
https://github.com/JUNO-collaboration/Database-dbi

[12] Zou J H, Huang X T, Li W D, Lin T, Li T, Zhang K, Deng Z Y and Cao G F 2015 J. Phys. Conf. Ser. 664
072053

[13] The Official YAML Web Site https://yaml.org

[14] MySQL C-API https://dev.mysql.com/doc/c-api/5.7/en/

https://yaml.org
https://dev.mysql.com/doc/c-api/5.7/en/

