
RNTuple: Towards First-Class Support for HPC
Data Centers

Giovanna Lazzari Miotto1,2, Javier Lopez-Gomez2
1 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
2 EP-SFT, CERN, Geneva, Switzerland

E-mail: 1glmiotto@inf.ufrgs.br, 2javier.lopez.gomez@cern.ch

Abstract. Future HENP experiments, e.g., at the HL-LHC, will increase the volume of
generated data by an order of magnitude compared to LHC Run 1 and Run 2. In order to sustain
the expected analysis throughput, ROOT’s RNTuple I/O subsystem has been engineered to
overcome the bottlenecks of the TTree I/O subsystem, focusing also on a compact data format,
asynchronous and parallel requests, and a layered architecture that allows supporting distributed
filesystem-less storage systems, e.g., HPC-oriented object stores. In a previous publication, we
introduced and evaluated the RNTuple’s native backend for Intel DAOS. Since its first prototype,
we carried out several improvements, both on RNTuple and its DAOS backend, aiming to
saturate the physical link, such as support for vector writes and an improved RNTuple-to-DAOS
mapping. In parallel, the latest developments allow for better integration between RNTuple
and ROOT’s storage-agnostic, declarative interface to write HENP analyses, RDataFrame. In
this work, we contribute with the following: (i) a redesign of the RNTuple DAOS backend,
including a mechanism for efficient population of the object store based on existing data; and
(ii) an experimental evaluation on a single-node platform, showing a significant increase in the
analysis throughput for typical HENP workflows.

1. Introduction
In the last few decades, the ROOT TTree [1] I/O has been used to efficiently store more than one
exabyte of high-energy physics data and has become the de facto standard format for HENP. Its
on-disk columnar layout enables efficient reading of a subset of the columns, a common use case
in HENP analyses. However, future experiments, such as those ushered by the HL-LHC, are
expected to increase the size of datasets by at least one order of magnitude, which makes high-
bandwidth low-latency NVMe/SCM memory and distributed object stores especially relevant.
TTree cannot fully exploit the capabilities of the aforementioned storage systems. RNTuple [2] is
the new columnar I/O subsystem for ROOT that addresses TTree’s shortcomings. In particular,
it targets high performance on low-latency NVMe devices, asynchronous and concurrent bulk
I/O, native support for object stores, e.g., DAOS, and robust, user-friendly interfaces.

Our contribution in this paper can be summarized as follows:
• We propose a matured, RNTuple–DAOS backend that delivers significantly improved

read/write throughput. We recognize the importance of write throughput given that data
must be imported into the object store to be processed in HPC facilities.

• We provide an experimental evaluation that demonstrates the performance improvements
of the proposed techniques in a realistic, end-to-end analysis.



2. Background
In this section, we introduce concepts that are key to both ROOT’s RNTuple I/O subsystem
and Intel DAOS, the object store targeted in this work.

2.1. ROOT’s RNTuple I/O subsystem
In RNTuple, data are stored column-wise on disk, similarly to TTree and Apache Parquet [3].
RNTuple consists of the actual stored data and the metadata structures that describe how the
former will be interpreted. User data are organized into pages and clusters. A page contains
an array of contiguous values of a fundamental data type (e.g., Int32) for a given column,
while clusters hold all the pages containing data for a range of rows in the dataset. Pages for
the same column and cluster denote a page group. On-disk pages are usually compressed.
Columns of a complex C++ type, e.g., std::vector<float>, are broken into columns of
fundamental data types. Metadata encompasses the header, the page lists, and the footer which
contain, respectively, the schema description, the location of pages and clusters, and summary
information and other metadata. For an illustrative example of the on-disk layout, see Figure 1.

RNTuple’s design decouples data representation from raw storage of byte ranges, enabling
the implementation of backends for different storage systems, such as POSIX files or object
stores.

… …

Header Page

Cluster

FooterPage List

Page Group

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Figure 1. RNTuple’s on-disk layout. Pages store data for the structure of matching color.

2.2. DAOS
DAOS [4] is part of the Intel exascale storage stack, and provides a fault-tolerant distributed
object store targeting high bandwidth, low latency, and high IOPS provided by NVMe and
SCM devices. DAOS completely bypasses the operating system’s virtual filesystem and block
I/O layers. On the one hand, this forgoes kernel I/O coalescing and buffering, which is mostly
relevant for spinning disks. On the other hand, the POSIX strong consistency model may
limit the scalability of parallel filesystems. A DAOS system comprises multiple servers running
a Linux daemon that exports local NVMe/SCM storage. RDMA is used to copy data from
servers to clients where available, e.g., over InfiniBand.

DAOS’ storage space can be partitioned into pools, which are further divided into container
namespaces, which hold objects. An object is a key–value store that is identified by a 128-bit
object ID (oid). DAOS splits its keys into two parts: the distribution key (dkey) and the
attribute key (akey); in particular, the former impacts data locality by determining the physical
device in which the data are stored.

3. Efficient storage of HENP data in DAOS
In previous publications [5], we introduced a prototype of a DAOS backend for RNTuple.
However, this initial version did not fully exploit the data link. In the following paragraphs, we
describe several improvements carried out to improve the read throughput and shorten the data
ingestion stage, i.e., the time required to import a dataset into the object store.

Orthogonal to the changes described below, and given the relatively high cost of creating an
operation queue, we reworked the backend to maintain a single, persistent queue per accessed
ntuple. Previously, queues were created and destroyed for each vector read/write.



3.1. Co-locality-based mapping function
Guided by typical HENP analysis patterns, RNTuple data are designed to be accessed columnar-
wise, on a page group basis. However, the migration to an object store paradigm can disband
related pages. Although previous mappings between RNTuple and DAOS did not exploit it (see
Eqn. 1), the locality-controlling dkey imparts a way to retain columnar semantics by crafting
a mapping function that keeps page groups together (see Eqn. 2). This unveils an opportunity
to read data efficiently in parallel, provided that neighboring pages’ requests are coalesced in
advance. In the equations below, Clusteri and Columnj denote, respectively, the cluster and
column identifiers, whereas Pagek is a strictly increasing integer that uniquely identifies a page.

φ : 〈Clusteri, Columnj , Pagek〉 → 〈oid, dkey, akey〉 : N3

φobject−per−page(Clusteri, Columnj , Pagek) 7→ 〈Pagek, αdkey, αakey〉 (1)
φlocality−driven(Clusteri, Columnj , Pagek) 7→ 〈Clusteri, Columnj , Pagek〉 (2)

3.2. Request coalescing
In order to benefit from the parallel reads made possible by the locality-driven mapping in
Section 3.1, requests for coinciding pages in DAOS servers must be made in the same call. The
DAOS’s client API allows calls with an arbitrarily long batch of requests for elements sharing
the oid and dkey. By deferring I/O calls until a cluster’s requests have been coalesced by
〈oid, dkey〉, we realize the potential for much faster throughput and minimize operation queue
overhead.

3.3. Vector writes
Though applicable to both reading and writing, the aforementioned improvements could not be
fully leveraged by the I/O subsystem without support for vector writes, i.e., performing multiple
update operations at once. Such batched transfers can improve throughput and amortize the
overhead costs associated with the network fabric, and thus shorten the data import stage.

RNTuple was already able to buffer pages and defer writing until the entire cluster was
committed, but pages were still individually issued to the underlying backend. Now, the interface
has been extended to trigger vector writes in storage backends that may benefit from it.

3.4. Scatter-gather concatenation
The block size can have a significant impact on data transfer throughput. Yet, the size of a
page, RNTuple’s data chunk unit, is fixed when the dataset is generated. The default page size
(64 KiB) is reasonable for a local filesystem; however, DAOS may benefit from larger chunks to
offset network overhead, especially over RDMA [6]. To circumvent this limitation, we introduce
a scatter-gather-based mechanism to splice many pages within the same page group that are,
then, transferred as a single unit.

4. Evaluation
In this section, we present the results of the experimental evaluation after applying the
improvements described in Section 3. The experiments were all conducted with the hardware
and software environments described below.

Hardware platform. Hewlett-Packard Enterprise’s Delphi cluster, comprising two servers and
six client nodes interconnected via InfiniBand fabric. A single client node was used.
Server nodes. 4× Intel Xeon Gold 6240M CPU (18 physical cores), 2.60 GHz, 24.75 MB

L3 cache, 185 GB DDR4 RAM, SMT enabled. These nodes are equipped with a Mellanox
MT28908 ConnectX-6 InfiniBand adapter.



Client node. 2× Intel Xeon E5-2640 v3 CPU (8 physical cores), 2.60 GHz, 20 MB L3
cache, 131 GB DDR4 RAM, SMT enabled. High-speed interconnection is available through
a Mellanox MT27800 ConnectX-5 InfiniBand adapter.

Software. The operating system is Red Hat Enterprise Linux 8.4 (kernel 4.18.0-305),
employing daos 2.2.0 (ofi+verbs provider), and libfabric 1.15.1.

Test cases. To evaluate the proposed method, we used the LHCb Run 1 open data ”B meson
decays to three hadrons” dataset comprising 26 columns, of which 18 are read for an analysis
that culminates in a histogram for the B mass spectrum. The original dataset contains 8.5
million events and amounts to an uncompressed size of 1.5 GB. To simulate the use case for
HPC clusters, the dataset is artificially replicated 10-fold to a total of 15 GB.

We measured both (i) the transfer rate for importing the entire dataset into DAOS, and (ii)
the end-to-end analysis throughput, i.e., from storage to histogram, for the following scenarios:

Baseline: experimental backend that predates the proposed improvements. It employs the
naïve object-per-page mapping between RNTuple pages and DAOS objects.

Current (object-per-page): with the improvements proposed in Section 3 and the previous,
object-per-page mapping.

Current (locality-driven): proposed improvements, mapping that exploits co-locality.
Target: same as above, but the optimization described in Section 3.4 has been enabled and

using a target transfer size of 1 MiB.

32
64

128 256 512 1,0
24

2,0
48

0

1

2

3

4

5

6

7

8

Page size (KiB)

G
B

/s

(2.a): write throughput (no compression)

32
64

128 256 512 1,0
24

2,0
48

0

1

2

3

4

5

Page size (KiB)

G
B

/s

(2.b): read throughput (no compression)

Target, 1 MiB block (locality-driven) Current (locality-driven)
Current (object-per-page) Baseline (object-per-page)

Figure 2. LHCb analysis throughput across different mappings, with OC_SX objects and 50 MB
clusters.

Figure 2.a and 2.b show, respectively, the measured write throughput in GB/s while importing
data and the read throughput during the analysis, both averaged over five runs. These plots
compare performance w.r.t. various page sizes in each scenario described. The best results are
achieved by using locality-driven mapping together with page sizes of around 1 MiB or more.
The horizontal dashed line corresponds to splicing pages up to a target size of 1 MiB.

Figure 3 shows a comparison of the read/write throughput attained by both versions of the
backend, before and after the improvements, for a dataset stored either uncompressed or using
zstd. The results demonstrate, respectively for write and read scenarios, 4.5 to 9× and 3 to
10× better performance with the proposed method across all page sizes.



Write Read

0

2

4

6

8

10

0.41 0.26

8.28

3.93

G
B

/s

(3.a): LHCb B2HHH (no compression)

Write Read

0

2

4

6

8

10

0.26 0.24

8.65

3.64G
B

/s

(3.b): LHCb B2HHH (zstd compression)

Baseline (64 KiB pages) Target (64 KiB pages, 1 MiB blocks)

Figure 3. Throughput comparison for native 64 KiB pages with the baseline and with the
current backend, with 1 MiB concatenation enabled.

5. Conclusion and future work
The results shown in the experimental evaluation demonstrate that, with the latest proposed
developments, RNTuple’s DAOS backend is ready for high-throughput analyses in HPC data
centers. In particular, we measured, respectively, a 9 and 4.3× improvement in the write and
read throughputs for the default 64 KiB page size, which directly translates into much faster
data ingestion and end-to-end analysis. By fully leveraging scatter-gather lists, the backend can
target transfer sizes associated with higher throughput independently from the page size.

In future work, we plan to evaluate the backend in multi-process and distributed analyses with
ROOT’s Distributed RDataFrame to saturate the link layer’s capacity. Moreover, significant
development efforts are underway to extend native support for the S3 object store.

Acknowledgments
This work benefited from support by the CERN Strategic R&D Programme on Technologies for
Future Experiments CERN-OPEN-2018-006 and the Intel–CERN openlab collaboration. Access
to the hardware for the experimental evaluation was provided by Hewlett-Packard Enterprise.

References
[1] Rene Brun and Fons Rademakers. “ROOT—An object oriented data analysis framework”.

In: Nuclear instruments and methods in physics research section A: accelerators,
spectrometers, detectors and associated equipment 389.1-2 (1997), pp. 81–86.

[2] Blomer, Jakob et al. “Evolution of the ROOT Tree I/O”. In: EPJ Web Conf. 245 (2020),
p. 02030. doi: 10.1051/epjconf/202024502030.

[3] Deepak Vohra. “Apache Parquet”. In: Practical Hadoop Ecosystem: A Definitive Guide to
Hadoop-Related Frameworks and Tools. Apress, 2016, pp. 325–335. doi: 10.1007/978-1-
4842-2199-0_8.

[4] Zhen Liang et al. “DAOS: A Scale-Out High Performance Storage Stack for Storage Class
Memory”. In: Supercomputing Frontiers: 6th Asian Conference, SCFA 2020, Singapore,
February 24–27, 2020, Proceedings, pp. 40–54. doi: 10.1007/978-3-030-48842-0_3.

[5] Javier Lopez-Gomez and Jakob Blomer. “Exploring Object Stores for High-Energy Physics
Data Storage”. In: EPJ Web of Conferences 251 (2021). Ed. by C. Biscarat et al., p. 02066.
doi: 10.1051/epjconf/202125102066.

[6] Philip Werner Frey and Gustavo Alonso. “Minimizing the Hidden Cost of RDMA”. In: 2009
29th IEEE International Conference on Distributed Computing Systems. 2009, pp. 553–560.
doi: 10.1109/ICDCS.2009.32.

https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-3-030-48842-0_3
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1109/ICDCS.2009.32

