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Abstract. The alpaka library is a header-only C++17 abstraction library for development
across hardware accelerators (CPUs, GPUs, FPGAs). Its aim is to provide performance
portability across accelerators through the abstraction of the underlying levels of parallelism.
In this paper we will show the concepts behind alpaka and how they are mapped to the
various underlying hardware models. In addition, we will also present the software ecosystem
surrounding alpaka.

1. Introduction
Over the last two decades, the hardware landscape in the field of high-performance computing
(HPC) has changed drastically. After making their first appearance in the TOP500 list in 2008
with the TSUBAME supercomputer [1] graphics processing units (GPUs) are now available on
many different HPC systems, including seven of the top ten systems in the current TOP500
list [2]. Field-programmable gate arrays (FPGAs) with high-bandwidth memory (HBM) are
available in data centers [3], while various companies are developing specialized accelerators for
artificial intelligence (AI) [4]. In addition, new designs for central processing units (CPUs) have
appeared, such as the Fujitsu A64FX processor with 32 GiB of HBM memory hardwired to the
48 CPU cores [5].

These increasingly heterogeneous hardware setups pose a challenge for programmers and
scientists since they have to adapt to the different processor architectures and accelerator types.
On the one hand, different vendors often offer incompatible programming models for their
hardware. On the other hand, performance optimizations require detailed knowledge about
a specific target hardware, but this knowledge usually does not apply to different hardware
types or may even be counterproductive.

These aspects have a severe impact on a program’s portability and maintainability, potentially
leading to a great amount of technical debt (see E. Allman’s introduction to the management
of Technical Debt [6]). Therefore we propose to use abstractions which mitigate this impact [7].
However, those come with a set of obstacles: How is a parallel problem expressed in an
abstract and user-friendly fashion? How are these expressions transformed into hardware-aware
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algorithms and data structures? How can one achieve maximum performance without sacrificing
portability, i.e. achieve performance portability?

To tackle these challenges we have developed the Caravan ecosystem with the kernel
abstraction library alpaka at its core.

2. Related Work
Originally, alpaka started as a Master’s Thesis project [8] and has been in continuous
development ever since7 (see Zenker et al. [9] and Matthes et al. [10] for more recent
alpaka-related publications). Libraries like RAJA [11] and Kokkos [12] share alpaka’s goal
of performance-portable C++ programming but follow different programming philosophies to
achieve it.

Apart from the library-based solutions listed above there are also two industry standards
available: OpenCL [13] and SYCL [14]. They are different from alpaka in a few aspects: Both
are API specifications provided by an industry consortium. Industry players (hardware vendors
and third parties) need to provide an implementation suitable for their specific set of hardware.
This results in varying support across vendors. Sometimes vendors do not (yet) support a
newer revision of the specification; in other cases they rely on custom extensions to maximize
performance on their hardware.

In addition, OpenCL is a split-source language (in contrast to the other solutions which are
single-source C++ APIs): The host program is coded in C, C++ or another language while the
device code is written in the OpenCL C(++) dialect and requires separate compilation at some
point.

3. Mapping to hardware models

Figure 1. Overview of alpaka’s concepts

Conceptually, alpaka is split into two domains: host and device (see Figure 1). The host
controls the overall program flow which includes device management, memory management and
synchronization with the device(s). Attached to the host are one or more devices which are
used for the execution of computational tasks (called kernels). A device can be any kind of
accelerator, like a GPU or a multi-core CPU.

Kernels are implemented using standard C++. However, alpaka is influenced by CUDA’s
kernel language and uses similar concepts for kernel development, for example grids, blocks and
threads for work division. In addition, it supports special device-side functionality, such as
mathematical functions which correspond to those from the C++ standard library (including
complex numbers), atomics or on-device synchronization. All kernels require a generic C++

template parameter which is propagated through an alpaka program and used for back-end
specialization. A target platform is selected as an in-program data type at compile time.
Kernels are mapped to specific target hardware architectures during compilation via template
instantiation.
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alpaka’s host-side abstractions (like memory buffers or device queues) are resolved in a similar
way to kernels. Because alpaka internally makes heavy use of C++ template metaprogramming
techniques the abstraction layers are removed at compile time and therefore incur no runtime
overhead.

Additionally, alpaka is designed to be user-extensible. For this purpose alpaka’s API comes
with a set of requirements, called concepts, which are inspired by C++20 concepts. As long as a
user-defined abstraction (for example a custom device queue) fulfills the corresponding concept
it can simply be used in place of the standard alpaka abstraction.

alpaka currently supports a variety of different platforms that can be targeted using the
appropriate back-end. These platforms include (among others) CUDA for NVIDIA GPUs,
ROCm for AMD GPUs, (experimentally) SYCL for oneAPI hardware (including FPGAs) and
OpenMP or TBB for multi-core CPUs.

4. The Caravan ecosystem

Figure 2. Overview of the Caravan ecosystem. The shaded libraries do not yet exist.

Over the past few years we have developed an ecosystem of libraries related to alpaka called
Caravan (see Figure 2. With the exception of Vikunja (presented in subsection 4.3) and
mallocMC (presentend in subsection 4.4) all projects are orthogonal to alpaka: They can be
used as standalone products or in a codebase that integrates both alpaka and the individual
libraries.

4.1. bactria
Fine-grained performance analysis is an important part of software engineering in an HPC
environment. The programming platforms for the various hardware accelerators also offer
functionality for user-defined code instrumentation, such as the NVIDIA Tools Extensions
(NVTX) or AMD’s ROCTX. However, like their general purpose API counterparts they are not
portable to other vendors’ hardware. The Broadly Applicable C++ Tracing and Instrumentation
API (bactria)8 is a work-in-progress library which offers a unified C++17 API for user-defined
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code instrumentation. At runtime, performance analysis can be achieved by dynamically loading
one of bactria’s plugins. The plugin will map bactria’s user-facing API onto the hardware
platform’s instrumentation API. The output of a program instrumented with bactria can then
be analyzed with the tools accompanying the native instrumentation APIs, like Nsight Systems
for CUDA or rocprof + Perfetto UI for ROCm.

4.2. LLAMA
Choosing the best memory layout for each hardware architecture is increasingly important as
more and more programs become memory bound. The low-level abstraction of memory access
(LLAMA)9 is a standard C++ library that provides a zero-runtime-overhead abstraction layer,
underneath which memory mappings can be freely exchanged to customize data layouts, memory
access, access instrumentation and memory allocation. After its scientific debut [15], several
improvements and extensions have been added to LLAMA. These latest additions are discussed
in our most recent update on LLAMA [16], and in a case study where we demonstrate LLAMA’s
memory instrumentation capabilities to optimize a particle transport simulation [17].

4.3. Vikunja
Many algorithms can be expressed as variations of software patterns commonly used in parallel
programming. However, implementing these common patterns by hand in a portable and
performant way is no trivial task. Vikunja10 is a performance portable C++ algorithm library
that defines functions operating on ranges of elements for a variety of purposes. It is implemented
using alpaka and therefore supports program execution on various accelerators. The user
interface is similar to the C++ standard library which makes the usage of common parallel
algorithms (like reductions and transformations) easy. In addition, Vikunja provides full
interoperability with alpaka. This allows for mixed execution of the various Vikunja-defined
algorithms and user-defined alpaka kernels on the same memory buffers.

4.4. mallocMC
Many algorithms require dynamic memory allocations in device code, for example to create
linked data structures. However, the programming platforms for accelerator devices either do
not offer such functionality or it entails high latencies. Our C++17 library mallocMC11 allows
for on-device, dynamic, chunked allocations by utilizing a memory pool which was pre-allocated
from the host side. It allows to exchange the allocation algorithm without introducing runtime
overhead or the necessity to refactor the application code. This is again achieved via compile
time abstractions using C++ templates. As one possible allocation method, mallocMC ships our
implementation of the ScatterAlloc algorithm [18], modified from Steinberger et al. [19], which
shows a performance increase over the native CUDA on-device allocation method.

4.5. RedGrapes
Modern compute nodes can concurrently perform computational tasks over various resources,
such as memory pools, cores and accelerator devices. In order to achieve high scalability in such
a system, communication and computation tasks need to be overlapped extensively. However,
the manual management of data and execution dependencies is a tedious and error-prone task.
Real-world applications often use global shared states or vary the workload at runtime. In
addition, asynchronous communication models complicate the program flow even further. The
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RedGrapes12 library is an attempt to tackle the aforementioned challenges. It provides a light-
weight, application-level C++ programming framework for the creation of task-graphs. These
are directed acyclic graphs (DAGs) whose vertices represent computational or communication
tasks and whose edges denote the execution order.

5. Performance
The approach to hardware abstraction presented in the previous section results in machine
code that is similar to what is generated by using the native programming models. alpaka’s
performance has been evaluated recently by Markomanolis et al. [20] and Valassi et al. [21].
Both groups demonstrated that code written in alpaka’s kernel language achieves performance
which is close to code written in the native counterparts. In the case of Markomanolis et al.,
the alpaka-based benchmarks consistently achieve more than 97% of their native counterparts
(with the maximum at 99.99%) across GPUs from different vendors.

6. Summary
We have presented the kernel abstraction library alpaka and its surrounding software ecosystem
Caravan as solutions to performance portability of scientific applications as well as the avoidance
of technical debt. Through abstraction using C++ template metaprogramming techniques this
collection of libraries enables the development of portable code bases and provides performance
close to vendor’s native programming models.
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[21] Valassi A, Childers T, Field L, Hageböck S, Hopkins W, Mattelaer O, Nichols N, Roiser S and Smith
D 2022 Proceedings of 41st International Conference on High Energy physics arXiv. Preprint. URL
https://arxiv.org/abs/2210.11122


