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Abstract. In contemporary high energy physics (HEP) experiments the analysis of vast
amounts of data represents a major challenge. In order to overcome this challenge various
machine learning (ML) methods are employed. A complication arises from the fact that in
addition to the choice of the ML algorithm a multitude of algorithm-specific parameters, referred
to as hyperparameters, need to be specified in practical applications of ML methods. The
optimization of these hyperparameters, which is often performed manually, has a significant
impact on the performance of the ML algorithm. In this work we explore two distinct
evolutionary algorithms, particle swarm optimization and Bayesian optimization, which allow
to determine optimal hyperparameters for a given ML task in a fully automated way. We also
studied the capability of these algorithms for utilizing the highly parallel computing architecture
that is typical for the field of HEP.

1. Introduction

The majority of the present day high energy physics data analysis employ some machine learning
methods in some shape or form. However, all of these algorithms feature a set of tunable
parameters, called hyperparameters, that need to be chosen by the user prior to the training
of the ML model. Depending on the ML algorithm, the choice of these hyperparameters can
have a significant impact on the performance of the trained model. The strategy of choosing
the optimal set of these hyperparameters, however, is not trivial and is done to this day often
manually. Tuning hyperparameters manually, requires expert knowledge of the hyperparameters
as well as the training data, consumes a lot of human time and makes the experiments not
repeatable, motivating an automatized hyperparameter search. In addition to performing well
the algorithms should be able to make full use of the high performance computing (HPC) cluster.
For these purposes the comparison of two algorithms, particle swarm optimization (PSO) and
Bayesian optimization (BO), featured in [I, 2] was made.

2. Particle swarm optimization

Particle swarm optimization (PSO) is an evolutionary algorithm that evolves a “swarm of
particles”, that with each iteration propagates through the hyperparameter space H. The
position of each particle in the swarm represents a set of hyperparameters h € H. There
are in total Npgrquer particles in the swarm, which allows the user to train the same amount of
ML models in parallel at each iteration of PSO.



The evolution starts with initializing Nyq,q1¢1 Particles in the hyperparameter space such that
the swarm covers the hyperparameter space evenly. For the purposes of initializing the particles
in the swarm we employed the latin hypercube [3] strategy.

The main part of the algorithm is the evolutionary loop, that is repeated until a certain
criterion such as maximum number of iterations is reached. This evolutionary loop consists out
of three main parts: espionage, position update and speed update. In the espionage step a subset
of the particles in the swarm with a size of Nj,f, is chosen randomly at each iteration k and
per each particle ¢. This subset of particles is queried for their previously found best location,
thus each particle ¢ can update it’s current best known location with respect to the objective
function (OF) in H.

In the next step of the evolutionary loop the position of each particle 7 is updated and
evaluated. The position is updated according to :E'f“ = :E'f +w- 13;’“ + F;k , where ff denotes the
current position of the particle and ﬁf its momentum. The momentum term w - ﬁf is prompting
particles to prefer moving in the current direction. The symbol F’f represents an “attractive
force”, which compels particles to move towards previously discovered minima and is defined as:
Ff=cior - (T =) +cp o (=), (1)

In the third and final step of the evolutionary loop the momentum of the particle is updated
according to:
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In our implementation parameters for PSO are chosen to be ¢; = co = 1.62, wyn = 0.4, and
Wmazr = 0.8, as suggested in Ref. [4]. The parameters r; and ry in Eq are random numbers
that are drawn from a uniform distribution withing the interval of [0, 1].

3. Bayesian optimization

The second algorithm, the Bayesian optimization (BO) algorithm, is aimed at optimizing
objective functions s(h) that are expensive to evaluate and for which neither the analytic form
nor derivatives are known.

This is made possible by the fact that BO does not perform the maximization on the s(h)
directly, but on an approximation of it which is referred to as the “surrogate” function (SF). The
SF is chosen such that it is fast to evaluate and its analytic form together with the derivatives
is known and that provides two values for each point h € H: the estimated value of s(h) and
the uncertainty associated with that value.

Similarly to PSO the initial points in H are chosen according to the latin hypercube strategy.

The optimization of the s(h) is done iteratively, where each iteration consists of two main
parts: finding the points h to evaluate and performing the time consuming evaluation of the OF
at these points; and updating the SF with the newly found s(h) values at the points h.

By default BO is a sequential algorithm. However in order to fully utilize the HPC , we follow
the approach described in Ref. [5], referred to as “multi-points expected improvement” (g-EI),
and use the implementation provided by Ref. [6] when running the hyperparameter parameter
optimization on multiple machines in parallel.

Bayesian optimization is reported to work best with less than 1000 evaluations [7].

Fig. [1] shows the optimization process at iterations 7 and 8 respectively. The solid blue line
in the upper part of each figure represents the objective function s(h), dashed black line the SF,
shaded blue area the confidence interval around the mean and the red diamonds the locations
where s(h) has been previously evaluated. On the lower part of each figure the solid red line
denotes the acquisition function (AF) and the yellow circle along the line the next location where
objective function s(h) will be probed.



Figure 1. Iteration 7 (left) and 8 (right) of the BO algorithm, approximating the function
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4. Benchmarks

In order to gauge the performances of PSO and BO two benchmark tasks, Rosenbrock function
and ATLAS Higgs boson machine learning challenge, were chosen and are described in more
details in the following.

4.1. Rosenbrock function
The Rosenbrock function [§] is a widely used trial function for evaluating the performance of
function minimization algorithms and is defined as R(z,y) = (a — z)? + b(y — 22)2.

The Rosenbrock function is used directly as the objective function. The hyperparameters
were optimized in the range of (z x y) = ([-500,4+500] x [—500, +500])

4.2. ATLAS Higgs boson machine learning challenge (HBC')

In contrast to the easier, smooth, 2D benchmark task of the Rosenbrock function, the ATLAS

Higgs boson machine learning challenge (HBC) [9] is more representative task for ML in HEP.
The goal of this challenge is to train a classifier that separates the events where Higgs boson

is decaying to two taus (H — 77) from the 3 selected background categories:

e 7 — 1,1 - decay of Z boson to two taus, which has a very similar topology to that of decay
of Higgs to two taus

e tt — 7, + u/e - pair of top quarks which might have a a lepton and a hadronic tau among
the decay products

e W boson decay - electron or muon + hadronic tau can appear simultaneously only through
imperfections in the particle identification process.

The classifier we trained was a boosted decision tree, XGBoost [10] in particular, for which
we chose the seven hyperparameters shown in the Tab[I] to optimize, thus making the HBC in
our context a 7 dimensional hyperparameter optimization problem.

Parameter ‘ min ‘ max H Parameter ‘ min ‘ max
num-boost-round 1 500 || min-child-weight | 0.0 | 500.0
learning-rate 107° | 1.0 subsample 0.8 1.0
max-depth 1 6 colsample-bytree | 0.3 1.0

gamma 0.0 5.0

Table 1. The seven XGBoost hyperparameters that were optimized for the HBC task. Within

the optimization, the hyperparameters were required to stay within the range indicated by the
min and max columns.



The objective was to maximize the significance of the analysis, and for these purposes an
objective function, approximate mean significance (AMS), defined by Eq., was given by the
organizers.

S
AMS—\/2-(s+b+br)~ln[1+m]—s (3)

As AMS depends only on the number of selected events which is a small part of the total
events, it is prone to overfitting. Therefore we used the modified mean significance (dAMS),
defined by Eq., where we can have a handle on the overtraining through the parameter s
such that higher x corresponds to less overtraining.

dAMS = AMStest — K- ma:z:((), [AMStest - AMSt'r‘ain]) (4)

5. Results

Both Bayesian optimization and particle swarm optimization were ran for 30 iterations having
100 solutions evaluated concurrently. The performances of the two algorithms for Rosenbrock
and HBC are shown on the left and right side of Fig[2] respectively. The public and private
datasets of the HBC shown on right hand plot are the two testing datasets provided by the
HBC organizers. As expected, Bayesian optimization performs in both cases better until
~ 103 evaluations, corresponding to the iteration 10 on Fig Past this point particle swarm
optimization passes Bayesian optimization in performance.

While the d-AMS score keeps increasing monotonously with more iterations, the AMS scores
on the public and private leader board samples reach a plateau already after 5-10 iterations.
In subsequent training iterations, the AMS scores start to fluctuate around the plateau. The
magnitude of the fluctuations is of O(1072). The differences in performance between the public
and private leaderboard samples is compatible with a statistical fluctuation of the signal and
background events contained in these samples [9]. The BO and PSO algorithms achieve a similar
performance on the HBC task.

The ability to scale well with a high degree of parallelization is evaluated by calculating the
speedup as per “Amdahl’s law” [I1]. The speedup on Fig is shown relative to the sequential
case. An ideal algorithm with negligible overhead would achieve a speedup factor equal to
Nparalier corresponding to a diagonal on Fig As we can see then PSO is near ideal in that
respect, taking only 0.01 CPUs per iteration for the 100 particles, whereas the evaluation of the
Rosenbrock function takes 0.06 CPUs on average.

As the evaluation of the HBC is only O(30) CPU minutes, the Bayesian overhead is negligible
for ML tasks that take hours, days or even weeks to evaluate.

With PSO being inherently a parallel algorithm, the optimal degree of parallelization is not
a priori known in contrast to BO, which works best when run sequentially.

For the purposes of finding this optimal degree of parallelization the Rosenbrock function
optimization was run for a multitude of different number of total evaluations and different
degrees of parallelization.

As we can see in Fig up to 10* total evaluations the optimal number of particles in the
swarm was roughly constant - setting the number of particles in the swarm to a value of 2%
times the total number of function evaluations and evolving the PSO algorithm for 50 iterations
seems to work very well.

6. Summary

We compared two distinct autonomous algorithms, particle swarm optimization and Bayesian
optimization, for the purposes of hyperparameter optimization on two benchmark tasks -
the Rosenbrock function and the ATLAS Higgs boson machine learning challenge. For both



Figure 2. Bayesian optimization performs better than particle swarm optimization until the

iteration 10 for both Rosenbrock function (left) and HBC (right) optimization tasks.
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Figure 3. Amdahl’s law: Parallelization properties of the BO and PSO algorithms on the two
benchmark tasks. The two curves for the PSO algorithm are very close to the optimal scaling
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benchmark tasks the Bayesian optimization converges faster up to ~ 10? total evaluation, after
which the particle swarm algorithm passes the Bayesian one in performance. Therefore BO is
more suitable in cases, where computational resources are limited. Both algorithms parallelize
well, despite BO having some noticeable computational overhead for optimization tasks with
fast to evaluate objective functions. PSO seems to work very well when setting 2% of the total
number function evaluations as the swarm size and evolving the swarm for 50 iterations.
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Figure 4. Left: On the top panel the optimal degree of parallelization is denoted by the empty
circles and the 2% of the total evaluations is shown by the dashed red line. On the bottom panel
the optimal relative degree of parallelization is shown as the solid black line. Right: the case of
3000 evaluations is shown, with the dashed red vertical line being at 60 = 3000 - 2%, the solid
black circles denoting the average found optimal Rosenbrock function value and the shaded blue
area the uncertainty around the mean.
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