
A
TL

-D
A

Q
-P

R
O

C
-2

02
3-

00
2

02
M

ar
ch

20
23

Fast Track Seed Selection for Track Following in the

Inner Detector Trigger Track Reconstruction

Andrius Vaitkus on behalf of the ATLAS Collaboration

University College London, Gower St, London, WC1E 6BT, UK

E-mail: andrius.vaitkus@cern.ch

Abstract. During ATLAS Run 2, in the online track reconstruction algorithm of the Inner
Detector, a large proportion of the CPU time was dedicated to the track finding. With the
proposed HL-LHC upgrade, where the event pile-up is predicted to reach ⟨µ⟩ = 200, track finding
will see a further large increase in CPU usage. Moreover, only a small subset of track candidate
seeds is accepted after the track finding procedure, spending the CPU time on seeds that are
discarded. Therefore, a computationally cheap track candidate seed pre-selection procedure
based on approximate track following was designed, which is described in this report. The
algorithm uses a simplified track extrapolation and a combinatorial Kalman filter simplified by
a reference-related coordinate system to find the best track candidates. For such candidates, a
set of numerical features were created to classify seeds using a Support Vector Classifier, tuned
with a high True Positive rate to ensure no significant loss of track finding efficiency. The
algorithm was implemented into the Athena framework for online seed pre-selection, and could
be potentially adapted for the ITk geometry for the Run 4 of the HL-LHC.

1. Introduction
The ATLAS experiment [1] is a multipurpose particle detector of the Large Hadron Collider
(LHC). One of its core components is the Inner Detector (ID), which is designed for fast track
and vertex finding in the pseudorapidity range of |η| < 2.5, defined in terms of the polar angle θ
as η = − ln tan(θ/2). It comprises an inner silicon Pixel detector, semiconductor tracker (SCT)
and an outer transition radiation tracker (TRT). Events are first processed at a 40 MHz bunch
crossing rate by the the first level hardware trigger system (L1) and selected at a rate of about
100 kHz. They are then further filtered by software algorithms in the High Level Trigger (HLT),
which records events to permanent storage at ≈ 1.2 kHz. The Fast Track Finder (FTF) [2]
is an algorithm developed to create track candidates early in the HLT system. It includes the
generation of track seeds from triplets of spacepoints (SPs), track candidate extrapolation and
fitlering using a combinatorial Kalman Filter. Its design philosophy is to prioritise efficiency
over purity. The track candidates can be further refined with a precision tracking stage.

In the FTF, the track following is the most computationally expensive task, taking up a
large proportion of the CPU time [2]. Moreover, only a small subset of track candidates coming
from Pixel-only seeds are accepted after the track following procedure, meaning the CPU time
used for track following is wasted for discarded candidates. The work described in this report
is aimed to design a computationally cheap pre-selection procedure based on an approximate
track following to identify and reject bad Pixel seeds early, while ensuring no significant loss of
track finding efficiency.

2. Seed Preselection Algorithm
For this study, Monte Carlo (MC) generated tt̄ events with the centre-of-mass energy of√
s = 13 TeV and the mean pile-up interaction multiplicity (number of simultaneous pp

collisions) of ⟨µ⟩ = 80 were used. For each event, a list of all associated SPs and triplet
seeds constructed at the combinatorial stage of ATLAS track seeding from the Run 2 geometry
was given. SP information included its position in global cylindrical polar coordinates (r, ϕ, z),
a detector layer index which the SP corresponds to, and a particle identifying barcode. The
barcode information is only available for simulated data and was only used for the algorithm
performance evaluation. Triplet seeds include indices of the SPs and a label indicating whether
the seed was accepted (“Good Seed”) or rejected (“Bad Seed”) in the baseline algorithm.

2.1. Approximate Track Extrapolation
The first part of the algorithm involved extrapolating each triplet seed to find the approximate
track trajectory and intersection points (IPs) with the detector layers. The simplified
extrapolation was designed to be computationally cheap, while still being sufficiently accurate.
The track path was defined in two different coordinate systems. The trajectory along the
beamline was approximated in the zr coordinate system, where z-direction is parallel to
the beamline and r is the perpendicular displacement from it. The trajectory in the plane
perpendicular to the beamline was defined in the cartesian coordinates xy. The full trajectory
can therefore be found with the r2 = x2 + y2 relationship between the coordinate systems.

In the zr-plane, a straight line was fitted through the first and last SPs of the triplet seed (SP1

and SP3). It was defined by parameters z0, the intersection of the track with the beamline, and
τ = cot θ, where θ is the track inclination angle in zr-plane. The trajectory in the xy-plane was
approximated as a parabola. To reduce the number of parameters, an extra set of coordinates
was defined: uv with the origin at the coordinates of SP3 and u-axis passing through SP2. The
conversion between the two coordinate systems was then done by shifting the coordinate of SP3

and rotating by an angle α between x- and u-axes. The visualised track fit in the zr- and
xy-planes can be found in figure 1. Overall, the track was defined by the following equations:

r(z) =
z − z0

τ
(1)

v(u) = au2 + bu. (2)

With the above track trajectories, the positions of the IPs with the detector layers were found,
checked against the layer bounds and stored. The sequence of IPs was sorted by increasing
distance from SP3 and defined the trajectory for each triplet seed. For each IP in the track
candidate, SPs in the vicinity were collected and stored for track filtering using their ϕ coordinate
and a search window of ±15 mm from IP in the detector layer’s non-reference coordinate.

(a) (b)

Figure 1: Approximate track extrapolations in zr (a) and xy (b) coordinate systems. The
dashed red line shows the fitted track. In (b), the rotated uv coordinate plane is shown in blue.

2.2. Track Seed Filtering and Classification
To reduce the computational complexity of the track filtering, a set of reference-related
coordinates was defined. For each seed, the sequence of IPs was used as a reference trajectory,
such that the new coordinate system was defined by (s,∆) = (s,∆x,∆y), where s is the track
path length and ∆x,∆y are perpendicular deviations from the reference (IP). It is important to
note that ∆x,∆y do not define the same plane as the global xy. This way, the track was defined
as an almost straight line and the need for modelling of the magnetic field in the later stages of
the algorithm was eliminated. Schematic representation of the conversion to reference-related
coordinates can be found in figure 2.

Figure 2: Schematic conversion of SP coordinates from global to reference-related coordinate
system. Note that ∆ is two-dimensional, but visualised as one-dimensional.

The track candidates and their collected SPs in the reference-related coordinate system were
then passed through a combinatorial Kalman Filter (KF) [3]. The use of this coordinate system
allowed for a linear propagation stage of the KF, further optimising the calculations. During the
KF correction stage, SP positions were used as measurements, with each collected SP creating
a new separate track candidate. To limit the number of candidates in the KF, only the 3 best
tracks were kept after each iteration, based on the Track Quality feature that is described below.
Measurement covariance was generated from the SP measurement uncertainties, while the noise
covariance was created from the multiple scattering uncertainty using Moliére’s formula [4].

Two features were generated for the classification during the KF. First, the Track Quality was
calculated by classifying hits as successful or missed based on a cut on the χ2 value (χ2

cut). The
track candidates were penalised for missed hits by subracting αpχ

2
cut and rewarded for successful

ones by adding αrχ
2
cut −χ2, where αp = αr = 2.0 were the penalty and reward coefficients. The

second feature designed was Hole Value, which was generated by selecting the largest number of
consecutive missed hits in a row of a given track, caclulating the total path length between these
missed hits as a ratio to the total track path, and integrating it over the importance function
f (x) = x2. This placed higher importance on a large number of missed hits further into the
track.

Based on the above features, a Support Vector Classifier with a polynomial kernel of order 2
was trained to predict whether a seed is rejected or accepted. It was tuned for a high acceptance
of good seeds to limit the loss of track finding efficiency. The tuned model classification on the
test tt̄ dataset resulted in a Good Seed acceptance (True Positive) rate of 0.96± 0.02 and a Bad
Seed rejection (True Negative) rate of 0.614± 0.010.

3. Performance Evaluation
3.1. Efficiency Comparison
Approximate track extrapolation and triplet seed preselections based on the classifier prediction
were implemented as an independent step in the ATLAS HLT Athena framework [5], in
between the Triplet Making and the Combinatorial Tracking stages of the FTF. To reduce

the computational overhead, the seed classification was stored as a lookup table (LUT) for fast
inference during the online preselection.

Figure 3 shows the efficiencies with and without the added preselection for FTF full detector
tracking in tt̄ events with pile-up ⟨µ⟩ = 80 as a function of truth track η (left) and pT (right).
The average track finding efficiency loss due to the preselection algorithm is 0.7%, from 93.2% in
the original FTF to 92.5% with the added preselection algorithm. The majority of the efficiency
loss is found in the large |η| region, which can be explained to be a result of material effects
from the forward detector region, which are not accounted for in the algorithm.

Figure 3: Track finding efficiency as a function of truth track η (left) and pT (right) with and
without the preselection of the track seeds algorithm added to the FTF. Error bars represent
statistical uncertainties. ATLAS full detector tracking with tt̄ ⟨µ⟩ = 80 [6].

3.2. CPU Time Comparison
Figures 4-6 show CPU time comparisons of different stages of FTF with and without the
added preselection stage. The preselection algorithm timing is included in the Triplet Making
stage, increasing the CPU time by a factor of 1.17 for tt̄ full detector tracking with pile-up
⟨µ⟩ = 80. However, the added preselection reduces the number of triplet seeds processed in
the Combinatorial Tracking stage, reducing the CPU time to 0.77 of that of the original FTF,
indicating a speed up factor of 1.29. The Triplet Making and the Combinatorial Tracking
stages make up 29% and 67% of the mean total time of the FTF, respectively, resulting in the
preselection stage reducing the total mean time to a factor of 0.89 of the baseline algorithm,
indicating a mean speed up of 1.12. This reduction of CPU time is expected to be greater for
higher levels of pile-up.

4. Summary
The addition of the track seed preselection to the Fast Track Following provided a reduction in
the CPU time to some of the stages of the algorithm. The applied preselection LUT resulted in a
speed up factor of 1.12 at a cost of a negligible efficiency loss of 0.7% compared with the original
FTF, at ⟨µ⟩ = 80 pile-up. This timing optimisation could be improved further by providing a
different LUT, without the need to redesign the algorithm itself. With higher levels of pile-up,
the effect of the optimisation is expected to be greater. This algorithm could be also adapted
for the ITk geometry [7] to be used in the HL-LHC [8], where the levels of pile-up are expected
to reach ⟨µ⟩ = 200.

Figure 4: Mean CPU time of the triplet
making stage of the FTF, with (black) and
without (red) the preselection, scaled by
a normalising factor such that the original
FTF distribution’s mean is 1. ATLAS full
detector tracking with tt̄ ⟨µ⟩ = 80 [6].

Figure 5: Mean CPU time of the combinato-
rial tracking stage of the FTF, with (black)
and without (red) the preselection, scaled by
a normalising factor such that the original
FTF distribution’s mean is 1. ATLAS full
detector tracking with tt̄ ⟨µ⟩ = 80 [6].

Figure 6: Mean CPU total time of the
FTF, with (black) and without (red) the
preselection, scaled by a normalising factor
such that the original FTF distribution’s
mean is 1. ATLAS full detector tracking
with tt̄ ⟨µ⟩ = 80 [6].

Copyright [2023] CERN for the benefit of the ATLAS Collaboration. Reproduction of this article
or parts of it is allowed as specified in the CC-BY-4.0 license.

References
[1] ATLAS Collaboration,“The ATLAS experiment at the CERN Large Hadron Collider”, 2008 JINST 3 S08003
[2] ATLAS Collaboration, “The ATLAS inner detector trigger performance in pp collisions at 13 TeV during

LHC Run 2”, 2022 Eur. Phys. J. C 82 206
[3] Frühwirth R, “Application of kalman filtering to track and vertex fitting”, Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 262,
no. 2, pp. 444–450, 1987

[4] Zyla P et al., “Passage of Particles Through Matter” in Review of Particle Physics, 8, vol. 2020, 2020, ch. 34,
083C01

[5] ATLAS Collaboration 2021 Athena
[6] HLT Tracking Public Results Atlas Public TWiki, en, https://twiki.cern.ch/twiki/bin/view/

AtlasPublic/HLTTrackingPublicResults, Accessed: 2023-02-20.
[7] ATLAS Collaboration, “Technical Design Report for the ATLAS Inner Tracker Pixel Detector”, 2017 CERN
[8] ATLAS Collaboration, “High-Luminosity Large Hadron Collider (HL-LHC): Technical design report”, 2020

CERN

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults

