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Abstract. The Belle II experiment has unique features that allow to study B meson decays
with neutrinos in the final state. It is possible to deduce the presence of such particles from the
energy-momentum imbalance obtained after reconstructing the companion B meson produced
in the event. This task is complicated by the thousands of possible final states in which B
mesons can decay, and is currently performed at Belle II by the Full Event Interpretation, an
algorithm based on Boosted Decision Trees and limited to specific, hard-coded decay processes.
In recent years, graph neural networks have proven to be very effective tools to describe relations
in physical systems, with applications in a range of fields. Particle decays can be naturally
represented in the form of rooted directed acyclic tree graphs, with nodes corresponding to
particles and edges representing the parent-child relations between them. In this work, we
present a graph neural network approach to generically reconstruct B decays at Belle II by
exploiting the information on the final-state particles alone, without formulating any prior
assumption about the nature of the decay. Preliminary results show that the graph neural
network approach outperforms the Full Event Interpretation by a factor of about 2 in terms of
number of decays whose topologies are correctly reconstructed.

1. Introduction
The Belle II detector [1] is a particle physics experiment located at the SuperKEKB
accelerator [2] in Tsukuba, Japan, where e+e− pairs are collided at the center-of-mass energy
of the Υ(4S) resonance, producing pairs of B mesons. The experiment has unique features
that allow to study B meson decays with invisible particles in the final state, for example
neutrinos. As shown in figure 1, the presence of such particles in signal decays (signal-side) can
be deduced by the energy-momentum imbalance obtained after reconstructing the companion B
meson produced in the event (tag-side). However, such a task is complicated by the presence of

2 On behalf of the Belle II software group.



thousands of decay modes in which the B can decay. The reconstruction of the tag-side decay
is currently performed at Belle II with the Full Event Interpretation (FEI) [3]. The FEI is an
algorithm based on Boosted Decision Trees (BDT) which uses a hierarchical approach with six
stages, as shown in figure 2. It constructs final-state particle candidates using the information on
the reconstructed tracks and clusters in the event, and combines them to intermediate particles
until a B candidate is formed. The output of the final BDT is interpreted as a likelihood for
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Fig. 1: Schematic overview of a Υ(4S) decay: (Left)
a common tag-side decay B−

tag → D0(→ K0
S(→

π−π+)π−π+)π− and (right) a typical signal-side-decay
B+

sig → τ+(→ µ+νµντ )ντ . The two sides overlap spa-
tially in the detector, therefore the assignment of a mea-
sured track to one of the sides is not known a priori.

The measurement of the branching fraction of rare
decays like B → τ ν, B → Kνν or B → `νγ , with un-
detectable neutrinos in their final states, is challenging.
However, the second B meson in each event can be used
to constrain the allowed decay chains. This general idea
is known as tagging. Conceptually, each Υ(4S) event
is divided into two sides: The signal-side containing the
tracks and clusters compatible with the assumed signal
Bsig decay the physicist is interested in, e.g. a rare decay
like B → τ ν; and the tag-side containing the remaining
tracks and clusters compatible with an arbitrary Btag

meson decay. Figure 1 depicts this situation.
The initial four-momentum of the produced Υ(4S)

resonance is precisely known and no additional parti-
cles are produced in this primary interaction. There-
fore, because of the relevant quantum numbers conser-
vation, knowledge about the properties of the tag-side
Btag meson allows one to recover information about the
signal-side Bsig meson which would otherwise be inac-
cessible. Most importantly, all reconstructed tracks and
clusters which are not assigned to the Btag mesons must
be compatible with the signal-decay of interest.

Ideally, a full reconstruction of the entire event
has to take all reconstructed tracks and clusters into
account to attain a correct interpretation of the mea-
sured data. The Full Event Interpretation (FEI)
algorithm presented in this article is a new exclusive
tagging algorithm developed for the Belle II experi-
ment, embedded in the Belle II Analysis Software Frame-
work (basf2) [2]. The FEI automatically constructs plau-
sible Btag meson decay chains compatible with the ob-
served tracks and clusters, and calculates for each decay
chain the probability of it correctly describing the true
process using gradient-boosted decision trees. “Exclu-
sive” refers to the reconstruction of a particle (here the
Btag) assuming an explicit decay channel.

Consequently, exclusive tagging reconstructs the Btag

independently of the Bsig using either hadronic or
semileptonic B meson decay channels. The decay chain
of the Btag is explicitly reconstructed and therefore the
assignment of tracks and clusters to the tag-side and
signal-side is known.

In the case of a measurement of an exclusive branch-
ing fraction like Bsig → τ ντ , the entire decay chain of
the Υ(4S) is known. As a consequence, all tracks and
clusters measured by the detector should be already ac-
counted for. In particular, the requirement of no addi-
tional tracks, besides the ones used for the reconstruc-
tion of the Υ(4S), is an extremely powerful and effi-
cient way to remove most reducible1 backgrounds. This
requirement is called the completeness constraint
throughout this text.

In the case of a measurement of an inclusive branch-
ing fraction like Bsig → Xu`ν, all remaining tracks and
clusters, besides the ones used for the lepton ` and the
Btag meson, are identified with the Xu system. Hence,
the branching fraction can be determined without ex-
plicitly assuming a decay chain for the Xu system.

The performance of an exclusive tagging algorithm
depends on the tagging efficiency (i.e. the fraction of
Υ(4S) events which can be tagged), the tag-side effi-
ciency (i.e. the fraction of Υ(4S) events with a correct
tag) and on the quality of the recovered information,
which determines the tag-side purity (i.e. the frac-
tion of the tagged Υ(4S) events with a correct tag) of
the tagged events.

The exclusive tag typically provides a pure sample
(i.e. purities up to 90% are possible). But this approach
suffers from a low tag-side efficiency, just a few percent,
since only a tiny fraction of the B decays can be explic-
itly reconstructed due to the large amount of possible
decay channels and their high multiplicity. The imper-
fect reconstruction efficiency of tracks and clusters fur-
ther degrades the efficiency.

Both the quality of the recovered information and
the systematic uncertainties depend on the decay chan-
nel of the Btag, therefore we distinguish further between
hadronic and semileptonic exclusive tagging.

Hadronic tagging considers only hadronic B de-
cay chains for the tag-side [3, Section 7.4.1]. Hence,
the four-momentum of the Btag is well-known and the
tagged sample is very pure. A typical hadronic B de-
cay has a branching fraction of O(10−3). As a conse-
quence, hadronic tagging suffers from a low tag-side
efficiency and can only be applied to a tiny fraction
of the recorded events. Large combinatorics of high-

1 Reducible background has distinct final-state products
from the signal.

Figure 1. Schematic representation of a
Υ(4S) decay into two B mesons [3].
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multiplicity decay channels further complicate the re-
construction and require tight selection criteria.

Semileptonic tagging considers only semileptonic
B → D`ν and B → D∗`ν decay channels [3, Section
7.4.2]. Due to the presence of a high-momentum lepton
these decay channels can be easily identified and the
semileptonic tagging usually yields a higher tag-side ef-
ficiency compared to hadronic tagging due to the large
semileptonic branching fractions. On the other hand,
the semileptonic tag will miss kinematic information
due to the neutrino in the final state of the decay.
Hence, the sample is not as pure as in the hadronic
case.

To conclude, the FEI provides a hadronic and semilep-
tonic tag for B± and B0 mesons. This enables the mea-
surement of exclusive decays with several neutrinos and
inclusive decays. In both cases the FEI provides an ex-
plicit tag-side decay chain with an associated probabil-
ity.

2 Method

The FEI algorithm follows a hierarchical approach with
six stages, visualized in Figure 2. Final-state parti-
cle candidates are constructed using the reconstructed
tracks and clusters, and combined to intermediate par-
ticles until the final B candidates are formed. The prob-
ability of each candidate to be correct is estimated by
a multivariate classifier. A multivariate classifier maps
a set of input features (e.g. the four-momentum or the
vertex position) to a real-valued output, which can be
interpreted as a probability estimate. The multivariate
classifiers are constructed by optimizing a loss-function
(e.g. the mis-classification rate) on Monte Carlo simu-
lated Υ(4S) events and are described later in detail.

All steps in the algorithm are configurable. There-
fore, the decay channels used, the cuts employed, the
choice of the input features, and hyper-parameters of
the multivariate classifiers depend on the configuration.
A more detailed description of the algorithm and the
default configuration can be found in Keck [4] and in
the following we give a brief overview over the key as-
pects of the algorithm.

2.1 Combination of Candidates

Charged final-state particle candidates are created from
tracks assuming different particle hypotheses. Neutral
final-state particle candidates are created from clus-
ters and displaced vertices constructed by oppositely
charged tracks. Each candidate can be correct (sig-
nal) or wrong (background). For instance, a track used
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Fig. 2: Schematic overview of the FEI. The algorithm
operates on objects identified by the reconstruction
software of the Belle II detectors: charged tracks, neu-
tral clusters and displaced vertices. In six distinct
stages, these basics objects are interpreted as final-state
particles (e+, µ+, K+, π+, K0

L, γ) combined to form in-
termediate particles (J/ψ , π0, K0

S, D, D∗) and finally
form the tag-side B mesons.

to create a π+ candidate can originate from a pion
traversing the detector (signal), from a kaon traversing
the detector (background) or originates from a random
combination of hits from beam-background (also back-
ground).

All candidates available at this stage are combined
to intermediate particle candidates in the subsequent
stages, until candidates for the desired B mesons are
created. Each intermediate particle has multiple possi-
ble decay channels, which can be used to create valid
candidates. For instance, a B− candidate can be created
by combining a D0 and a π− candidate, or by combin-
ing a D0, a π− and a π0 candidate. The D0 candidate
could be created from a K− and a π+, or from a K0

S

and a π0.
The FEI reconstructs more than 100 explicit decay

channels, leading to O(10000) distinct decay chains.

2.2 Multivariate Classification

The FEI employs multivariate classifiers to estimate the
probability of each candidate to be correct, which can
be used to discriminate correctly identified candidates
from background. For each final-state particle and for
each decay channel of an intermediate particle, a mul-
tivariate classifier is trained which estimates the signal
probability that the candidate is correct. In order to
use all available information at each stage, a network

Figure 2. Schematic view of the six stages
of the FEI [3].

the reconstructed candidate to be a real B meson decay. The decay modes are hard-coded in
the algorithm, which limits the number of reconstructible decay channels to about 15% of the
total branching fraction, resulting in a reconstruction efficiency of about 1%.

In this paper, a novel approach based on deep Graph Neural Networks (GNN) to inclusively
reconstruct the tag-side B meson, which allows to increase the reconstruction efficiency, is
presented. Section 2 describes the proof of concept using a simulated toy particle decay dataset,
while Section 3 describes a first application to a fully simulated Belle II dataset.

2. Particle decay reconstruction with deep Graph Neural Networks
GNNs are a class of deep learning algorithms that act on graphs, i.e. sets of independent entities
(nodes) and their relationships (edges). A particle decay can be naturally described by a rooted
directed acyclic tree graph, where nodes represent particles and edges the parent-child relations
between them. The adjacency matrix A of a graph of n nodes is an n × n binary matrix with
Aij = 1 if two nodes i and j are connected by an edge and Aij = 0 otherwise. However, the
approach of using a GNN to reconstruct the adjacency matrix requires the total number of nodes
in the graph to be known a priori, while only final-state particles are detected by experiments,
the total number of intermediate particles being unknown. To overcome this difficulty, a novel
approach based on the Lowest Common Ancestor (LCA) matrix [4, 5] is used. The LCA of two
nodes a and b is defined as the farthest node from the root that is an ancestor of both a and b.
Figure 3 shows an example of B decay with its adjacency and LCA matrices. In the following,
two representations of the LCA matrix are employed: the LCAG, in which each ancestor is
replaced with its corresponding generation in the tree, and the LCAS matrix, in which each
ancestor belongs to a predefined class (5 for B mesons, 4 for D∗ mesons, 3 for D mesons, 2 for
K0

S , 1 for π0 and J/ψ and 0 if a common ancestor can not be identified).
For the proof of concept [6], the training dataset is simulated using the Phasespace library [7]

and reflects the relative mass scales and decay multiplicities observed in nature. The network
used is the encoder component of the Neural Relational Inference (NRI) model [8], shown in
figure 4. Its building blocks consist of node-to-edge and edge-to-node message passing modules,
followed by MultiLayer Perceptrons (MLPs) containing two linear layers with Exponential Linear



Event
Generation

+

+

0

-

0

+

B-meson
(root)

Intermediate
Particles
(unkown)

Final State
Particles

1st gen.

2nd gen.

0th gen.

3rd gen.

Reconstructed

Stable Particles

Particle decay tree
=

rooted directed acyclic
tree graph

Adjacency Matrix
-

0
1
0
0
0
0

+

1
0
0
0
0
0

- 0 1 0 0 0 0 0 0
+ 1 0 0 0 0 0 0 0

0 1 0 00 0
1 0 1 1 0 0
0 1 0 0 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0

0

+

+

0

0 ++ 0 Lowest Common Ancestor (LCA)
Matrix
+ -

+

-

+ 0 0 0

0 0 0

0 0 0

0 0 0 -

+

+

+

+

+

+ + + + + +

Figure 3. Example of B decay described in terms of its adjacency and LCA matrices [5].

Unit (ELU) activations. The model takes as input the four-momenta of the simulated final-
state particles. The target of the training is the LCAG matrix, where each entry is treated
as an individual classification task with a softmax followed by an argmax function after the
last layer. The metric used to evaluate the performances is the rate of perfectly reconstructed
LCAG matrices in the dataset. Figure 5 shows the performances of the NRI model applied to
the simulated dataset. The model is able to correctly predict the LCAG matrix for an average
of 47.7% of decay trees in an independent sample, which increases to 60.9% and 94.2% for decay
trees with ≤ 10 and ≤ 6 final-state particles.
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Figure 4. Schematic representation of the encoder component of the NRI model. The dashed
arrows indicate skip connections [6].

G

Figure 5. Performances of the NRI model as a function of the number of final-state particles
(leaves) and the depth of the decay tree. Dark red indicates disallowed topologies [6].



3. Application to Belle II simulation
In order to reconstruct the LCA matrix, and hence the topology, of B decays in the Belle II
experiment, a new model called Graph-based Full Event Interpretation (graFEI) is developed. A
schematic view of the model is shown in figure 6. The model is based on graph network blocks [9]
and its input is a fully-connected graph where nodes represent the final-state particles detected
by the experiment. The input graph contains node-level (four-momenta, charged particle
identification information, impact parameters of the tracks, neutral clusters information), edge-
level (angle between pairs of particles’ momenta) and global-level (number of particles in the
final state) attributes. The input graph is passed through a series of graph network blocks,
each in turn composed of three sub-blocks dedicated to the update of edge, node, and global
attributes. Each sub-block combines the input information into an MLP with one hidden layer
and ELU activation. The input information of the edge sub-block is the edge attributes, the
node attributes of the two nodes connected to each edge and the global attributes. The output
of the sub-block is then used as input for the following node and global sub-blocks. The input
information of the node sub-block is the node attributes, the average of edge attributes for edges
connected to the same node and the global attributes. The output of the sub-block is then used
as input for the following global sub-block. The input information of the global sub-block is the
global attributes, the average of edge attributes over the graph and the average of node attributes
over the graph. The updated edge-level attributes are used to predict the LCAS matrix of the
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Figure 6. Schematic view of the graFEI model. MLPs are indicated with ϕ whereas ρ indicates
aggregation functions, i.e. averages of edges connected to the same node (ρe→v), edges over the
graph (ρe→u) or nodes over the graph (ρv→u). Figure adapted from [9].

decay by applying a softmax followed by an argmax function. The model is trained on about
9 million simulated monogeneric Υ(4S) → B0(→ νν̄)B̄0(→ X) decays, where one B0 meson
decays into a pair of undetected neutrinos, while the companion B0 meson is decayed into any
of the possible B0 decays included in the Belle II simulation framework. The model is able to
correctly predict the LCAS matrix for an average of 18.6% of decay trees in an independent
monogeneric sample. It has to be noticed that, contrary to the simulated sample used for the
training of the NRI, resolution effects which degrade the performances of the model are present
in the Belle II simulation.

A comparison of the performances of the graFEI and FEI is performed using an independent
monogeneric signal sample and a background sample obtained selecting a random subset of
tracks from simulated generic Υ(4S) decays. In order to derive from the graFEI a quantity able
to discriminate between signal and background events, the softmax probabilities corresponding
to the predicted classes are multiplied over the LCAS matrix. The distribution of such a quantity
and a comparison of the two algorithms are shown in figure 7. For both the graFEI and FEI
it is required that, in addition to having a perfectly reconstructed decay topology, there are no



tracks in the event not belonging to the decay tree. In these conditions, the graFEI shows a
maximum signal efficiency of 9.1% with a corresponding background rejection of 94.7%, while
the FEI shows a maximum signal efficiency of 4.7% with a corresponding background rejection
of 99.5%.
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Figure 7. (a) Discriminating quantity derived from graFEI softmax probabilities used to
separate signal events from random combinations of tracks coming from B0 decays. (b)
Background rejection as a function of signal efficiency for graFEI and FEI.

4. Conclusions
A novel approach based on GNNs allows to inclusively reconstruct particle decays exploiting
the information on the final-state particles alone. Results obtained on a simulated Phasespace
dataset show the ability of the encoder part of the NRI model to correctly predict the LCA
matrix of a large fraction of decay trees. Extending this approach to a simulated Belle II
dataset suggests that GNNs enable a two times higher maximum signal efficiency than the
current reconstruction algorithm.
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