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Abstract. We use Fréchet Inception Distance (FID) measured in the latent spaces of pre-
trained, fine-tuned and custom-made inception networks to evaluate Generative Adversarial
Networks (GANs) developed by the COherent Muon to Electron Transition (COMET)
collaboration to generate sequences of background hits in a Cylindrical Drift Chamber (CDC).
We validate the convergence of the GANs’ training and show that the use of self-attention
layers reduces FID. Our method enables the use of FID as an evaluation metric even when an
application-specific inception network is not readily available, making it transferable to other
GAN applications in High Energy Physics.

1. Introduction
The COherent Muon to Electron Transition (COMET) experiment [1] is an experiment based at
J-PARC in Japan, which will probe for neutrinoless muon to electron (µ− e) conversion, which
constitutes an observation of Charged Lepton Flavour Violation (CLFV). Neutrino oscillations
render µ − e conversions possible, albeit with a very small cross-section. Observing µ − e
conversions would be a clear indicator of new physics. The COMET experiment is a two-phase
experiment with Phase-I aiming to achieve a single event sensitivity (SES) of 7 × 10−15, and
Phase-II aiming for a SES of 2.6×10−17 [2], improving on the current experimental limit [3] by a
factor of 2.7×104. In Phase-I, a proton beam will be directed onto a graphite target, producing
pions which decay into muons, which are transported to an Aluminium target forming muonic
Al13 atoms. The aluminium target is surrounded by a Cylindrical Detector system [1], consisting
of trigger hodoscope arrays and a Cylindrical Drift Chamber (CDC). A particle entering one
of the CDC cells triggers a hit. Each CDC hit has four features: the energy deposit (EDEP),
the hit time, the distance of closest approach to the sense wire (DOCA) and the ID of the
cell triggered (wire ID). Hits are used for track reconstruction and to extract kinematics. The
signature of a µ− e conversion is a 105 MeV electron [1].

2. Motivation
COMET Phase-I will produce 1.5×1016 captured muons [1]. Monte Carlo (MC) methods, which
were used by the collaboration to develop a simulation of the experiment, are too intensive to
simulate the number of background hits present in a full-size dataset. Thus, the COMET
collaboration developed Generative Adversarial Networks [4, 5] (GANs) to approximate the



Figure 1. Plots of the 3d representations, and of their three 2d projections, of a sequence
of (top) noise hits and (bottom) reconstructible hits in the COMET cylindrical drift chamber.
Colour indicates time, size indicates the distance of closest approach, and transparency indicates
the energy deposit.

mapping between a multivariate normal distribution, which can be efficiently sampled, and the
background hit sequences distribution. Evaluating the GAN is crucial to ensure that it can be
used to augment the simulated data and enable accurate sensitivity estimates.

In previous works, deep generative models were evaluated by measuring the similarity of
real and generated distributions of explicitly or implicitly learned features [6, 7, 8], using the
accuracy of a classifier as a proxy [6, 9] or by measuring Fréchet Inception Distance [10] (FID) in
a latent space [7, 11]. The latter method has the advantage of directly comparing real and fake
samples but necessitates a fully trained inception network, which requires many resources. In
this work, we measure FID using pre-trained, fine-tuned and custom-made inception networks
to evaluate GANs developed by the COMET collaboration. Our methods are transferable and,
in the case of pre-trained models, could alleviate the need to develop and train an inception
network from scratch in HEP applications.

3. Method
We aim to use deep neural networks as maps from the hit sequences space to a latent space in
which a meaningful metric can be constructed.

Firstly, we use Inception v3 (Iv3) [12] pre-trained on the ImageNet [13]. Provided that
our data is re-shaped to exhibit geometrical patterns, Iv3 should be able to map similar hit
sequences, with respect to those patterns, to similar regions of the latent space. The data is
composed of particle hits ordered in time. We segment the data into shorter sequences of L
consecutive hits and use the wire ID feature to place each hit on a 2-dimensional N × N grid
before stacking them together to obtain 3-dimensional images (see Fig. 1, top). The remaining
features (DOCA, EDEP, time) are channels of these images. The input of Iv3 must have a shape
of 3×299×299 [12], so we set L = N = 299 and reduce the images to two dimensions by taking
their projections along each of the three axes.

While being an out-of-the-box solution, Iv3 was not explicitly trained to form a good
representation of the CDC data. Hence, we also used a fine-tuned version of Iv3 (FTIv3) and
a custom 3-dimensional Convolutional Neural Network (3D CNN), both trained on CDC hits.



Figure 2. Evolution, during the self-attention GAN training, of FID measured in the latent
spaces of (left) Inception v3 (centre) Fine-tuned Inception v3 and (right) a custom 3d CNN.

FTIv3 and the custom 3D CNN were trained to classify sequences of noise hits from sequences
of reconstructible hits. Reconstructible hits, in the MC simulation, are defined as hits caused
by particles with pT > 50MeV/c, which are more likely to leave tracks in the CDC (see Fig. 1,
bottom) than noise hits (pT < 50MeV/c). FTIv3 was made by simply adding three new layers
to Iv3. One convolutional layer before the original input, which maps from R3×3×299×299 to
R3×299×299, allowing the network to consider the three 2-dimensional projections at the same
time, and two linear layers at the output, one which maps from the original latent space R1000 to
a new latent space R512 and one which maps from that latent space to the output space R2 (two
classes). During the training of FTIv3, the weights of Iv3 are frozen, and only the new layers
are trained. The 3D CNN was designed to take as an input the 3D images, and all the layers
were trained on the classification task. To augment the size of the training dataset, we reduced
the size of the sequences using L = N = 150. For FTIv3 and the 3D CNN, the latent space is
accessed by removing the last linear layer of the neural networks. For all inception networks,
the means µ1 and µ2, as well as the covariances C1 and C2 of the distributions of the GAN and
MC-generated hit sequences, respectively, are measured to compute the FID between the two
distributions in a given latent space [10]:

FID2 = ||µ1 − µ2||22 +Tr

(
C1 +C2 − 2(C1C2)

1/2

)
, (1)

thereby providing a measure of the similarity between the GAN and MC-generated distributions
in that space.

4. Results
4.1. Training convergence
The evolution of the FIDs in the latent spaces of Iv3, FTIv3 and the custom 3D CNN during
the training of the GAN is shown in Fig. 2. All plots suggest that the FID decreases during
training and converges within the training time. While the evolution of the FID in the Iv3 and
FTIv3 latent spaces seems well-behaved, the FID in the latent space of the 3D CNN reaches
values of O(104) and decreases less monotonically. The training of the 3D CNN was found to be
unstable, with exploding activations after a few epochs of training, which explains the large FID
scores. The spikes in this FID plot are, therefore, likely due to a poorly constructed latent space
resulting from the unstable training. Fundamentally, this could be due to the high sparsity of
the data, making convolutions in R3 sub-optimal. In the future, an alternative would be to use
convolutions on a graph adapted to the detector’s geometry.



4.2. Comparison of two GAN architectures
We used the FID in the latent spaces of Iv3, FTIv3 and the custom 3D CNN to compare
two GAN architectures developed by the COMET collaboration: one with self-attention layers
[14, 5] (SAGAN) and one without (GAN). Values are shown in Table 1. While the FIDs in all
latent spaces suggest the superiority of the SAGAN architecture, one must account for the fact
that FID has a statistical bias which scales with 1/N [15], where N is the number of samples
used to compute the metric, with an unknown prefactor which can differ between two sets of
samples. In other words, the FID measured from a finite number of samples cannot directly
be compared across GANs. To validate the comparison between models, we also measure the
effectively unbiased FID [15] in the latent spaces, with results shown in Fig. 3 for the Iv3 latent
space. Plots clearly show that the limit of the FID as N → ∞ is lower for the SAGAN than the
GAN.

Table 1. FID between distributions of Monte Carlo simulated hits, GAN generated hits, and
SAGAN generated hits measured in the latent spaces of 3 inception networks.

Inception v3 Fine-tuned 3D CNN
Projection Y-Z T-Y T-Z
FID, MC-MC 4.6 6.4 6.4 0.64 8,408
FID, GAN-MC 69.5 95.5 92.8 17.8 54,678
FID, SAGAN-MC 37.3 72.1 71.3 4.5 15,150

Figure 3. Measurement of the effectively unbiased FID (FID∞) between GAN and MC hits
and SAGAN and MC hits measured in the latent space of Inception v3. FID∞ is the limit of
FID as the number of samples tends to infinity.

5. Conclusion
The COMET experiment aims to improve the state-of-the-art single-event sensitivity to
neutrino-less µ − e conversions by a factor of 2.7 × 104. However, accurately estimating the
sensitivity of COMET and other very high background experiments is challenging using Monte
Carlo simulations. Therefore, the COMET collaboration developed GANs to approximate
and sample the distribution of background hit sequences in the experiment’s Cylindrical Drift
Chamber (CDC). Fréchet Inception Distance is the standard metric to evaluate GANs in
computer vision but is often impractical in HEP applications since it requires a fully trained
inception network. In this work, we described how we used pre-trained, fine-tuned and custom
inception networks to evaluate the GANs developed by the COMET collaboration.

We found that the custom inception network was unable to form a well-constructed latent
space, highlighting the importance of carefully considering the architecture and training process



of custom inception networks. On the other hand, we have shown that pre-trained and fine-
tuned inception networks can be valuable tools for evaluating the performance of our GANs.
Our study has contributed to the COMET collaboration by validating the convergence of the
GANs’ training and providing guidance on the choice of GAN architectures for future work
by demonstrating the advantages of using self-attention GANs to improve the generated hit
sequence distributions.
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