
Integrations with a neural network

Daniel Mâıtre
Institute for Particle Physics Phenomenology, Department of Physics, University of Durham,
South Rd, Durham DH1 3LE, United Kingdom

E-mail: daniel.maitre@durham.ac.uk

R. Santos-Mateos
Department of Electronics and Computing, University of Santiago de Compostela, Spain

E-mail: roi.santos@usc.es

Abstract. In this contribution we describe a strategy to automatically perform parametric
integrations through a specialized fitting of a neural network. The training is performed
only once and the result can be used to obtain the value of the integral for any values
of the unintegrated parameters. We show example applications and demonstrate that a
usable accuracy can be obtained for integrations in 3 and 6 integrated dimensions with three
unintegrated parameters.

1. Introduction
The representation power of Neural Networks (NN) have been used in many different fields to
produce integrated quantities. They have been used to estimate the free energy density from
single differential data [1] in material science, or employed to accelerate image rendering [2].

ML techniques have also been utilized in the field of particle physics where they are
used to improve the efficiency of Monte Carlo integrations [3, 4, 5, 6, 7, 8] and event
generation [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. It is worth emphasizing that the method
presented here is different, as instead of modifying the integration process it replaces it with
fitting a function, at the potential cost of a lower precision.

The class of integrals we consider in this contribution take the form

I(s1, ..., sm) =

1∫
0

dx1 . . .

1∫
0

dxk f(s1, ..., sm;x1, ..., xk) , (1)

where the variables xi are the integration variables in k dimensions and the ”physical”
unintegrated parameters are labeled by si. The idea presented here is a way of preventing
the need for repeated Monte Carlo (MC) integrations for each different set of values s1, ..., sm.

The traditional way information is sampled in x − s space is illustrated in figure 1. For
each new set of ”frozen” values of the parameters s1, ..., sm the dependence on the auxiliary
parameters xi is investigated separately. The method we present will take advantage of the
knowledge of the dependence of the integrand f as a function of all its arguments, instead of
considering many different functions in many independent MC integrations. The sampling in
x− s space corresponding to our method is illustrated in figure 2.



x

s

Figure 1. Illustration of the sampling of the integrand. In the usual approach with independent
numerical integrations each run corresponds to an individual integration (represented by a line
of different color) and no information is shared between them.

x

s

x

s

Figure 2. Illustration of the sampling in x-s space for random (left) and Quasi-Monte Carlo
(right) sampling.

2. Method
In this section we give an overview of the method, further details can be found in [19]. The
starting point is to consider the primitive function F of the integrand f , which has the property

dkF (s1, ..., sm;x1, ..., xk)

dx1 . . . dxk
= f(s1, ..., sm;x1, ..., xk) . (2)

Given this function we can calculate the integral I in Eq. 1 as

I(s1, ..., sm) =
∑

x1,...,xk=0,1

(−1)k−
∑

xiF (s1, ..., sm;x1, ..., xk) . (3)

In practice F cannot be obtained analytically. The method proposes to deploy a NN to
approximate it:

F (s1, ..., sm;x1, ..., xk) ≃ N (s1, ..., sm;x1, ..., xk) (4)

where the auxiliary variables xi and the parameters si on are the same footing as network inputs.
The network is trained in such a way that its derivatives match the integrand. This can be

achieved by using a simple Mean Squared Error loss:

L = MSE

(
f(s1, ..., sm;x1, ..., xk),

dN (s1, ..., sm;x1, ..., xk)

dx1...dxk

)
, (5)



and minimizing it with respect to the network parameters. This loss involves the derivative of
the NN with respect to its input (as opposed to the more common calculation of the gradient
with respect to its parameters).

We denote the output of node i of layer l with a
(l)
i , it is given by

a
(l)
i = ϕ

(
z
(l)
i

)
, z

(l)
i =

∑
j

w
(l)
ij a

(l−1)
j + bli . (6)

where ϕ is the activation function. With

a
(0)
i = xi for i ≤ k , a

(0)
i = si−k for i > k . (7)

as a special case for the first layer.
The output of the network with L layers is given by

y =
∑
j

w
(L+1)
j a

(L)
j + b(L+1) (8)

To calculate the derivative of the output with respect to the input, we apply the chain rule.
The calculation will involve the calculation of

dpz
(l)
i

dx1dx2...dxp
=

∑
j

w
(l)
ij

dpa
(l−1)
i

dx1dx2...dxp
, (9)

which in turn involves through application of the chain rule the derivative of the activation
function value with respect to the input parameters. As an example we have

d3a
(l)
i

dx1dx2dx3
= ϕ(3)(z

(l)
i )

dz
(l)
i

dx1

dz
(l)
i

dx2

dz
(l)
i

dx3

+ϕ′′(z
(l)
i )

[
d2z

(l)
i

dx1dx3

dz
(l)
i

dx2
+

dz
(l)
i

dx1

d2z
(l)
i

dx2dx3
+

d2z
(l)
i

dx1dx2

dz
(l)
i

dx3

]

+ϕ′(z
(l)
i )

d3z
(l)
i

dx1dx2dx3
, (10)

Expressions for higher derivatives are collected in Ref. [19].
The training of the network with the specialized loss function of Eq. 5 is similar to the training

of a NN with the usual MSE loss, with a set of distinctive features. First the initialization of the
network parameters has to be revisited as the way activations and gradients propagate changes.
Secondly since we fit the network to the values of the integrand, we have the flexibility to choose
our training data by selecting the values in x − s space, this freedom, both in number and
distribution offers a range of options for optimization of the fitting process. Finally we have the
choice of the activation function to use in the network.

We observed that applying a Korobov transformation [20] helps improving the accuracy of
the method. We start with a normalized weight function w

1∫
0

w(t)dt = 1 . (11)

and define the variable transformation

x(t) =

t∫
0

w(t′)dt′ (12)



which, inserted into the integral definition yields

1∫
0

dxf(x) =

1∫
0

dtw(t)f(x(t)) . (13)

The examples in this contribution were obtained using

w(t) = 6t(1− t) , x = t2(3− 2t) (14)

for each of the individual xi variables.
A typical issue with parametric integrals is that their integrand can span a wide range of

scales as different values of the parameters s1, ..., sm are chosen. This makes the fitting more
challenging. To combat this problem we normalize the integrand by its value at a fixed location
in x space (we pick the center of the unit hypercube). This means we first transform the
integrand according to

f → f̃(s1, ..., sm;x1, ..., xk) ≡
f(s1, ..., sm;x1, ..., xk)

f(s1, ..., sm; 12 ,
1
2 , , ...,

1
2)

. (15)

and accordingly for the integral:

I → Ĩ(s1, ..., sm) ≡ I(s1, ..., sm)

f(s1, ..., sm; 12 ,
1
2 , ...,

1
2)

. (16)

3. Results
In this section we show preliminary results of the method applied to two integrals derived using
sector decomposition for one- and two-loop integrals for the gg → HH process. The exact
definition can be found in Ref. [19].

The first example is an integral obtained for the one-loop amplitude for gg → HH. It has
four physical parameters: the mass of the heavy quark in the loop mt, the mass of the Higgs
boson mH and two Mandelstamm variables s12 and s14. The integral considered here is one
of the three sectors generated through the sector decomposition process, as implemented in
PySecDec [21, 22, 23, 24]. We evaluate it in the Euclidean region

−30 ≤ s12/m
2
t ≤ −3 − 30 ≤ s14/m

2
t ≤ −3 − 30 ≤ m2

H/m2
t ≤ −3 (17)

Figure 3 shows the relative accuracy of the integral value predicted by our method for two
different choices of activation functions in the primitive network. The quantity plotted is

p = log10

∣∣∣∣e− t

t

∣∣∣∣ (18)

with e being our estimate and t the true value as calculated using PySecDec. The results were
obtained using 4 hidden layers of 100 nodes each, with a training involving 800 epochs where
each epoch drew a fresh set of 4 million phase-space points.

The second example integrand is one of the 30 sectors obtained by PySecDec from the sector
decomposition of a two-loop box integral for the same process. It has the same number of
physical parameters but the integration is now over six Feynman parameters. The results are
shown on the right-hand panel of Figure 3. They were obtained using a network with 4 hidden
layers, each with 30 hidden nodes and training on 200 epochs with each 800,000 phase-space
points.



−8 −7 −6 −5 −4 −3 −2

p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fr
eq

u
en

cy

1L sigm

1L tanh

−6 −5 −4 −3 −2 −1

p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

fr
eq

u
en

cy

2L sigm

2L tanh

Figure 3. Accuracy of the integral estimate for the sigmoid and the tanh activation function.
The left-hand panel shows the 1-loop example integral and the right-hand panel shows the result
for the 2-loop integral.

Figure 4. Ratio of the actual deviation to the standard deviation of the replica results.

In order to estimate the error due to randomness in the initialization and training of the
network we trained four replicas of the networks on the same data. We use the average of
the individual network estimates as our prediction, and the standard deviation of the replica
estimates as an uncertainty on this prediction. The ratio between the true deviation from the
true result and its estimate through the replica method is shown in Figure 4. This shows that
the replica method provides a sensible estimate of the deviation between the NN estimate and
the true value.

4. Conclusion
In this contribution we presented a method to obtain the results for parametric integrations using
a neural network. The advantage of the method is that the usual repeated numerical integrations
for each set of values of the parameters are avoided and information about the dependence of the
integrand on the physical parameters can be pooled. We would like to stress that once trained,
the network can provide the an estimate of the integral for any value of the physical parameters



(within the volume used for the training) with a fixed number of evaluations corresponding to
the integration boundaries, i.e. 2d for a d-dimensional integral, which is completely negligible in
comparison with the time a MC integration would take. The trade-off is in the time needed to
train the network and the accuracy it can obtain.

There is much work to be done in optimizing the training process and we expect that it can
be made to be both quicker and result in a more precise estimate. We are looking forward to
applying this method to more complex problems and investigating the limits of its applicability.

References
[1] Teichert G, Natarajan A, Van der Ven A and Garikipati K 2019 Computer Meth-

ods in Applied Mechanics and Engineering 353 201–216 ISSN 0045-7825 URL
https://www.sciencedirect.com/science/article/pii/S0045782519302889

[2] Lindell D B, Martel J N P and Wetzstein G 2020 CoRR abs/2012.01714 (Preprint 2012.01714) URL
https://arxiv.org/abs/2012.01714

[3] Bendavid J 2017 (Preprint 1707.00028)
[4] Gao C, Isaacson J and Krause C 2020 Mach. Learn. Sci. Tech. 1 045023 (Preprint 2001.05486)
[5] Klimek M D and Perelstein M 2020 SciPost Phys. 9 053 (Preprint 1810.11509)
[6] Bothmann E, Janßen T, Knobbe M, Schmale T and Schumann S 2020 SciPost Phys. 8 069 (Preprint

2001.05478)
[7] Stienen B and Verheyen R 2021 SciPost Phys. 10 038 (Preprint 2011.13445)
[8] Chen I K, Klimek M and Perelstein M 2021 SciPost Physics 10 ISSN 2542-4653 URL

http://dx.doi.org/10.21468/SciPostPhys.10.1.023

[9] Gao C, Höche S, Isaacson J, Krause C and Schulz H 2020 Phys. Rev. D 101 076002 (Preprint 2001.10028)
[10] Otten S, Caron S, de Swart W, van Beekveld M, Hendriks L, van Leeuwen C, Podareanu D, Ruiz de Austri

R and Verheyen R 2021 Nature Commun. 12 2985 (Preprint 1901.00875)
[11] Hashemi B, Amin N, Datta K, Olivito D and Pierini M 2019 (Preprint 1901.05282)
[12] Di Sipio R, Faucci Giannelli M, Ketabchi Haghighat S and Palazzo S 2019 JHEP 08 110 (Preprint

1903.02433)
[13] Butter A, Plehn T and Winterhalder R 2019 SciPost Phys. 7 075 (Preprint 1907.03764)
[14] Bishara F and Montull M 2023 Phys. Rev. D 107 L071901 (Preprint 1912.11055)
[15] Backes M, Butter A, Plehn T and Winterhalder R 2021 SciPost Phys. 10 089 (Preprint 2012.07873)
[16] Butter A, Diefenbacher S, Kasieczka G, Nachman B and Plehn T 2021 SciPost Phys. 10 139 (Preprint

2008.06545)
[17] Alanazi Y et al. 2020 (Preprint 2001.11103)
[18] Nachman B and Thaler J 2020 Phys. Rev. D 102 076004 (Preprint 2007.11586)
[19] Mâıtre D and Santos-Mateos R 2023 JHEP 03 221 (Preprint 2211.02834)
[20] Korobov N 2019 Number-Theoretic Methods of Approximate Analysis (Fizmatgiz, Moscow)
[21] Borowka S, Heinrich G, Jahn S, Jones S P, Kerner M, Schlenk J and Zirke T 2018 Comput. Phys. Commun.

222 313–326 (Preprint 1703.09692)
[22] Borowka S, Heinrich G, Jahn S, Jones S P, Kerner M and Schlenk J 2019 Comput. Phys. Commun. 240

120–137 (Preprint 1811.11720)
[23] Heinrich G, Jahn S, Jones S P, Kerner M, Langer F, Magerya V, Pöldaru A, Schlenk J and Villa E 2022

Comput. Phys. Commun. 273 108267 (Preprint 2108.10807)
[24] Heinrich G, Jones S P, Kerner M, Magerya V, Olsson A and Schlenk J 2024 Comput. Phys. Commun. 295

108956 (Preprint 2305.19768)


