
Speeding up Madgraph5 aMC@NLO through

CPU vectorization and GPU offloading:

towards a first alpha release

A Valassi1, T Childers2, L Field1, S Hageböck1, W Hopkins2,
O Mattelaer3, N Nichols2, S Roiser1, D Smith1, J Teig1, C Vuosalo4,
Z Wettersten1

1 IT Department, CERN, Geneva, Switzerland
2 Argonne National Laboratory, USA
3 Université Catholique de Louvain, Belgium
4 University of Wisconsin-Madison, USA

E-mail: andrea.valassi@cern.ch

Abstract. The matrix element (ME) calculation in any Monte Carlo physics event generator is
an ideal fit for implementing data parallelism with lockstep processing on GPUs and vector
CPUs. For complex physics processes where the ME calculation is the computational bottleneck
of event generation workflows, this can lead to large overall speedups by efficiently exploiting
these hardware architectures, which are now largely underutilized in HEP. In this paper,
we present the status of our work on the reengineering of the Madgraph5 aMC@NLO event
generator at the time of the ACAT2022 conference. The progress achieved since our previous
publication in the ICHEP2022 proceedings [1] is discussed, for our implementations of the ME
calculations in vectorized C++, in CUDA and in the SYCL framework, as well as in their
integration into the existing MadEvent framework. The outlook towards a first alpha release of
the software supporting QCD LO processes usable by the LHC experiments is also discussed.

1. Introduction
Computing architectures designed for data parallelism, such as CPUs with vector registers and
GPUs, are now ubiquitous in the computing resources used for the data processing of High
Energy Physics (HEP) experiments, such as the High Performance Computing (HPC) centers
available to the Large Hadron Collider (LHC) experiments and the sites of the Worldwide LHC
Computing Grid (WLCG). The full compute power of GPUs and vector CPUs, however, is often
underexploited in HEP processing, partly because the software is old and was designed before
these architectures became mainstream, but also because many HEP workflows involve a lot of
stochastic branching and are therefore intrinsically difficult to port to data parallel paradigms,
one notable example being detector simulation. Monte Carlo (MC) matrix element generators,
conversely, are an ideal fit to exploit these architectures. This is because the calculation of
scattering amplitudes and matrix elements (MEs), which is the computational bottleneck of
these programs for complex physics processes, involves the repeated execution of the same
functions on different data items (the various “events” randomly generated by MC sampling),
and it is possible to achieve a perfect lockstep processing in its data parallel execution.

Version 2.0 (8 December 2023)
Minor updates over version 1.0 (31 March 2023)



Our work on the reengineering of the Madgraph5 aMC@NLO (MG5aMC) event generator [2]
follows precisely this approach. As described in our previous proceedings of the vCHEP2021 [3]
and ICHEP2022 [1] conferences, our new implementation of the ME calculation in CUDA and
vectorized C++ achieves lockstep processing with 100% branch efficiency on NVidia GPUs and
the maximum theoretically possible SIMD speedups (x8 and x16 in double and single floating
point precision for AVX512/zmm) on vector CPUs. In this paper, we mainly document the
results presented at the ACAT2022 conference (October 2022), where we had reported the
process achieved in the few months since ICHEP2022 (July 2022). This includes in particular
some performance tests of the vectorized C++ implementation using all cores of a CPU rather
than a single CPU core, some performance improvements for the serial component of the overall
workflow, the implementation of a new “mixed” precision mode where both single and double
floating point precision are used for different parts of the ME calculation, and the full integration
into the existing MadEvent framework of the ME calculation implemented using SYCL. We also
briefly mention a few new results achieved since ACAT2022 at the time of writing (March 2023),
some of which will be described in more detail in upcoming talks [4, 5].

As discussed in Ref. [3], our port of MG5aMC ME calculations to CUDA and NVidia GPUs,
which is based on Feynman diagrams and helicity amplitudes, represents a restart from scratch of
previous efforts [6, 7] in this direction in 2009, which unfortunately were never integrated into a
production quality framework usable by HEP experiments. Other approaches for porting matrix
element event generators to GPUs have also been suggested. The development of MadFlow [8, 9]
is another project based on MG5aMC helicity amplitudes, which however is independent from
our work and differs from it because it uses Python and the TensorFlow framework. Furthermore,
a GPU port of ME calculations based on Berends-Giele recursion relations, which was initially
prototyped [10] in 2010 as a way to achieve a better scalability with the number of external
particles in the scattering process than one based on Feynman diagrams (polynomial rather than
factorial), has recently been implemented into the new PEPPER simulation framework [11, 12].

2. Speeding up the serial component of the MadEvent framework
As we previously described in our ICHEP2022 proceedings [1], our strategy for delivering to the
LHC experiments a software application that they can run to generate samples of events, with
well-known user interfaces and identical physics output but at a fraction of current computational
costs, is based on injecting one of our new data-parallel implementations (in CUDA/C++ or
SYCL) of the ME calculation into the existing MadEvent framework, replacing only the previous
scalar Fortran implementation of the same ME calculation. The “outer shell” of the MadEvent
framework, which is also implemented in Fortran, takes care of all tasks other than the ME
calculation, which we will collectively refer to as the “non-ME serial component” of MadEvent:
this includes, amongst other things, the generation of pseudo-random numbers, their mapping
to particle momenta using a well defined sampling strategy (based on the MadEvent single-
diagram enhancement multichannel algorithm [13]), the merging of multi-jet final states (for
instance using the so-called “MLM” scheme [14, 15]), the execution of the hit-or-miss unweighting
algorithm, the calculation of cross sections and the I/O intensive writing of LHE event data
files. While all these tasks only account for a few percent of the overall wall-clock time when the
Fortran serial MEs are used, the situation changes dramatically when the much faster (one to
three orders of magnitude) CUDA/C++ or SYCL data-parallel MEs based on CPU vectorization
or GPUs are used, as the MadEvent non-ME serial component quickly becomes the bottleneck.

In the results presented at ICHEP2022 for the gg→ tt̄gg process, for instance, we had reported
that generating 90k weighted events took 58.3 seconds overall (5.2s in the MadEvent non-ME
serial component and 53.1s in the ME calculation, see Table 2 in Ref. [1]) using Fortran MEs,
but only 6.1 seconds overall (5.7s non-ME and 0.36s MEs) using double-precision CUDA MEs.
In other words, the factor ∼200 speedup in the ME calculation only led to an overall speedup



madevent standalone
CUDA grid size 8192 524288

gg→ tt̄gg
MEs tTOT = tMad + tMEs Nevents/tTOT Nevents/tMEs

precision [sec] [events/sec] [MEs/sec]
Fortran double 55.4 = 2.4 + 53.0 1.63E3 (=1.0) 1.70E3 (=1.0) — —
CUDA double 2.9 = 2.6 + 0.35 3.06E4 (x18.8) 2.60E5 (x152) 2.62E5 4.21E5 (x247)
CUDA float 2.8 = 2.6 + 0.24 3.24E4 (x19.9) 3.83E5 (x225) 3.96E5 8.77E5 (x516)

Table 1. Processing times and throughputs for 90112 gg→ tt̄gg weighted events. One core of a
CERN VM (Intel Silver 4216 CPUs, one NVidia V100 GPU), cuda11.7 and gcc11.2 builds. See
Ref. [1] for further details, e.g. on the difference between the madevent and standalone columns.

by a factor ∼10: this is the limit predicted by Amdahl’s law [16] since the serial non-ME
component was originally 5.2s/58.3s, i.e. approximately 10% of the overall processing time. Our
new ACAT2022 results for the same process are given in Table 1: the generation workflow in the
madevent executable now takes 55.4 seconds overall (2.4s non-ME and 53.0s MEs) using Fortran
MEs, but only 2.9 seconds overall (2.6s non-ME and 0.35s MEs) using double-precision CUDA
MEs, i.e. a factor two faster than in the ICHEP2022 results. The difference between the two sets
of results is only in the MadEvent non-ME serial component, which is now a factor two faster,
while the speed of the CUDA ME calculation is essentially unchanged. The overall speedup
from Fortran to CUDA is now ∼20, as predicted by Amdahl’s law since the serial component
was originally 2.4s/55.4s, i.e. approximately 5% of the overall processing time.

To explain this speed-up, we recall [1] that the original MadEvent framework, which was
looping through individual events and executing the full processing chain (random sampling of
momenta, computing MEs, unweighting, multi-jet merging etc.) one event at a time, had to be
modified to allow the data-parallel calculation of MEs on a large batch of events at the same time:
this naturally led to the introduction of large Fortran arrays to keep all relevant properties of all
the events in that batch. In this particular case, the speedup of the serial non-ME component
from 5.2s to 2.4s was obtained by rationalizing the handling of MLM multi-jet merging, and in
particular by moving most of its processing before the ME calculation, which made it possible
to completely get rid of some very large Fortran arrays that had been introduced in the initial
transformation of MadEvent from a single-event to a multi-event processing framework.

Speeding up the MadEvent serial non-ME component is especially important when offloading
the ME calculation to a GPU, but it remains relevant when MEs are computed on vector CPUs.
For instance, our new results for generating 80k gg→ tt̄gg events on an Intel Gold 6148 CPU,
which are given in Table 2, show that the overall workflow now takes 6.1 seconds (1.8s non-ME
and 4.3s MEs) using our ”512z” vectorization level (AVX512 with zmm registers [1]), while at
ICHEP2022 we had reported that the same workflow on the same machine took 7.1 seconds (2.5s
non-ME and 4.5s MEs, see Table 1 in Ref. [1]). Again, the difference between the two sets of
results mainly comes from the MadEvent serial non-ME component, but the effect of Amdahl’s
law is less pronounced for C++ than for CUDA, as the ME calculation is still the bottleneck.

While this speed-up in MadEvent is already an important achievement, we think that this is
just the first step and that there is still much potential for further performance improvements.
Further rationalizations of the use of large Fortran arrays may still be possible. In addition,
we are investigating ways to speed up the MadEvent serial non-ME component by parallelizing
it at least in part. One idea, for instance, is to offload to the GPU (or vectorize on the CPU)
some parts of the computation, such as the mapping from random numbers to momenta in the
sampling algorithm, or the unweighting process. Another possible approach, which represents a
truly heterogeneous processing scenario, would consist in running several copies of the madevent
application in parallel on different CPU threads, while sharing the GPU amongst them for the
ME calculation. In addition to speeding up the MadEvent non-ME component by parallelizing
it amongst different CPU cores, another advantage of this approach is that it could allow a
decrease in the RAM footprint of each madevent process on the CPU (which is problematic



madevent standalone

gg→ tt̄gg
MEs tTOT = tMad + tMEs Nevents/tTOT Nevents/tMEs

precision [sec] [events/sec] [MEs/sec]
Fortran(scalar) double 37.3 = 1.7 + 35.6 2.20E3 (=1.0) 2.30E3 (=1.0) —
C++/none(scalar) double 37.8 = 1.7 + 36.0 2.17E3 (x1.0) 2.28E3 (x1.0) 2.37E3
C++/sse4(128-bit) double 19.4 = 1.7 + 17.8 4.22E3 (x1.9) 4.62E3 (x2.0) 4.75E3
C++/avx2(256-bit) double 9.5 = 1.7 + 7.8 8.63E3 (x3.9) 1.05E4 (x4.6) 1.09E4
C++/512y(256-bit) double 8.9 = 1.8 + 7.1 9.29E3 (x4.2) 1.16E4 (x5.0) 1.20E4
C++/512z(512-bit) double 6.1 = 1.8 + 4.3 1.35E4 (x6.1) 1.91E4 (x8.3) 2.06E4
C++/none(scalar) float 36.6 = 1.8 + 34.9 2.24E3 (x1.0) 2.35E3 (x1.0) 2.45E3
C++/sse4(128-bit) float 10.6 = 1.7 + 8.9 7.76E3 (x3.6) 9.28E3 (x4.1) 9.21E3
C++/avx2(256-bit) float 5.7 = 1.8 + 3.9 1.44E4 (x6.6) 2.09E4 (x9.1) 2.13E4
C++/512y(256-bit) float 5.3 = 1.8 + 3.6 1.54E4 (x7.0) 2.30E4 (x10.0) 2.43E4
C++/512z(512-bit) float 3.9 = 1.8 + 2.1 2.10E4 (x9.6) 3.92E4 (x17.1) 3.77E4

Table 2. Processing times and throughputs for 81952 gg→ tt̄gg weighted events. One core
of Juwels Cluster login node jwlogin07 (Intel Gold 6148 CPUs), gcc11.2 builds. See Ref. [1] for
further details, e.g. on the five different vectorization levels (none, sse4, avx2, 512y, 512z).

as discussed in Ref. [1]), as it should be possible to achieve the same overall occupancy of the
GPU while decreasing the number of events computed in parallel by a single madevent process,
i.e. its CUDA grid size. The results of a preliminary test relevant to this approach are displayed
in Fig. 1, which shows the variation of the combined ME throughput achievable from a single
NVidia V100 GPU when this is shared by up to 8 processes running in parallel on different
CPU threads. The notable effect that we were hoping to see, and which is indeed achieved, is
that the throughput curve moves to the left as the number of CPU processes increases, while
still reaching the same combined throughput plateau at the end: this means that the maximum
GPU throughput may be reached by running many CPU applications with smaller CUDA grid
sizes, rather than a single application with a very large grid size. Another positive result,
which however we were not anticipating and will deserve more in-depth analysis, is the fact that
the maximum combined GPU throughput actually increases by almost 50% when launching
kernels from different CPU threads. It should be stressed that this plot, which was obtained
using the infrastructure developed for the HEP-SCORE benchmarking project [17], refers to the
“standalone” application [1] where the ME calculation is not yet integrated in the full MadEvent
workflow: in the future, we plan to repeat similar studies using the full MadEvent workflows,
which would represent a more realistic test of a production-like heterogeneous scenario.

Figure 1. Total combined throughput for the gg→ tt̄gg process using 1, 2, 4 or 8 copies of our
standalone application (see Ref. [1]), as a function of the CUDA grid size (number of blocks per
grid times number of threads per block — ”gt00256” indicates that the latter is fixed to 256).



Figure 2. Total combined throughput for the gg→ tt̄gg process as a function of the number of
copies of our single-threaded standalone application, in our five C++ vectorization scenarios.
The y-axis represents the ratio of the achieved throughput to a reference with no vectorization
and a single CPU process. For reference, the range of values of the absolute throughputs is also
shown. The x-axis represents the number of simultaneous processes launched on the test node,
which includes 32 physical CPU cores with Hyper-Threading enabled (64 logical cores in total).

3. Further performance tests and improvements in the ME calculation
In parallel to our efforts to understand and speed up the MadEvent serial non-ME component,
we have also continued to pursue further improvements and analyses of the ME calculations.

To start with, based on the same benchmarking infrastructure that we used to produce Fig. 1
for the CUDA back-end, we analysed the performance of our vectorized C++ back-end when
several CPU cores are used. This differs from the results that we presented in our previous
papers as well as in Table 2 above, which all refer to a single CPU core. The results of this test
are given in Fig. 2. One effect that is immediately visible is that the AVX512/zmm throughputs
(purple line) continue to be significantly faster than the AVX512/ymm (red) and AVX2 (green)
throughputs even when many cores are used, but not by a factor two. This may be due to
a clock slowdown, but we have not verified it. With respect to non-vectorized throughput on
a single core, the overall speedup of AVX512/zmm with 32 processes (the number of physical
cores in these two Intel Gold 6130 CPUs) using single floating point precision is approximately
300, compared to a theoretical maximum of 512 (32 times 16), which seems quite satisfactory.

Another progress in the CUDA/C++ back-end has been the addition of a “mixed” floating
precision mode, where Feynman diagrams are computed in double precision, while the “color
algebra” part of the ME calculation is done in single precision. The rationale for this approach
is that floats provide approximately a factor two speedup over doubles both in vectorized C++
(because twice as many floats as doubles fit into the same vector register) and in CUDA (because
typical NVidia data center cards have twice as many FLOPs for FP32 as for FP64), but single
precision does not provide enough numerical precision for the Feynman diagram part of the ME
calculation. The idea was to test whether single precision could at least be used for the “color
algebra”: our tests confirmed that the same cross sections could be obtained within ∼10−5 in
this case, which seems enough. Our throughput results for the gg→ tt̄ggg process are shown in

madevent standalone
CUDA grid size 8192 16384

gg→ tt̄ggg
MEs tTOT = tMad + tMEs Nevents/tTOT Nevents/tMEs

precision [sec] [events/sec] [MEs/sec]
Fortran double 1228.2 = 5.0 + 1223.2 7.34E1 (=1.0) 7.37E1 (=1.0) — —
CUDA double 19.6 = 7.4 + 12.1 4.61E3 (x63) 7.44E3 (x100) 9.10E3 9.51E3 (x129)
CUDA float 11.7 = 6.2 + 5.4 7.73E3 (x105) 1.66E4 (x224) 1.68E4 2.41E4 (x326)
CUDA mixed 16.5 = 7.0 + 9.6 5.45E3 (x74) 9.43E3 (x128) 1.10E4 1.19E4 (x161)

Table 3. Processing times and throughputs for 90112 gg→ tt̄ggg weighted events. One core
of a CERN VM (Intel Silver 4216 CPUs, one NVidia V100 GPU), cuda11.7 and gcc11.2 builds.



madevent standalone

gg→ tt̄ggg
MEs tTOT = tMad + tMEs Nevents/tTOT Nevents/tMEs

precision [sec] [events/sec] [MEs/sec]
Fortran(scalar) double 813.2 = 3.7 + 809.6 1.01E2 (=1.0) 1.01E2 (=1.0) —
C++/none(scalar) double 986.0 = 4.3 + 981.7 8.31E1 (x0.8) 8.35E1 (x0.8) 9.82E1
C++/sse4(128-bit) double 514.7 = 4.2 + 510.5 1.59E2 (x1.6) 1.61E2 (x1.6) 1.95E2
C++/avx2(256-bit) double 231.6 = 4.0 + 227.6 3.54E2 (x3.5) 3.60E2 (x3.6) 4.41E2
C++/512y(256-bit) double 208.6 = 3.9 + 204.8 3.93E2 (x3.9) 4.00E2 (x4.0) 4.95E2
C++/512z(512-bit) double 124.6 = 4.0 + 120.6 6.58E2 (x6.5) 6.79E2 (x6.7) 8.65E2
C++/none(scalar) float 936.1 = 4.3 + 931.8 8.75E1 (x0.9) 8.79E1 (x0.9) 1.02E2
C++/sse4(128-bit) float 228.9 = 3.9 + 225.0 3.58E2 (x3.6) 3.64E2 (x3.6) 4.30E2
C++/avx2(256-bit) float 114.1 = 3.8 + 110.4 7.18E2 (x7.2) 7.43E2 (x7.4) 9.06E2
C++/512y(256-bit) float 104.5 = 3.8 + 100.7 7.84E2 (x7.9) 8.14E2 (x8.1) 1.00E3
C++/512z(512-bit) float 61.8 = 3.8 + 58.0 1.33E3 (x13.3) 1.41E3 (x14.1) 1.77E3
C++/none(scalar) mixed 986.0 = 4.3 + 981.6 8.31E1 (x0.8) 8.35E1 (x0.8) 9.98E1
C++/sse4(128-bit) mixed 500.4 = 3.9 + 496.5 1.64E2 (x1.6) 1.65E2 (x1.6) 2.00E2
C++/avx2(256-bit) mixed 220.5 = 3.8 + 216.7 3.72E2 (x3.7) 3.78E2 (x3.8) 4.55E2
C++/512y(256-bit) mixed 195.6 = 3.7 + 191.8 4.19E2 (x4.2) 4.27E2 (x4.3) 5.21E2
C++/512z(512-bit) mixed 118.5 = 3.8 + 114.7 6.92E2 (x6.9) 7.15E2 (x7.2) 8.97E2

Table 4. Processing times and throughputs for 81952 gg→ tt̄ggg weighted events. One core
of Juwels Cluster login node jwlogin07 (Intel Gold 6148 CPUs), gcc11.2 builds.

Table 3 for CUDA and Table 4 for vectorised C++. While encouraging, these results are still
preliminary and we plan to pursue further tests of this approach.

4. SYCL-based developments and C++ compiler studies
While all tables and plots presented so far in this paper refer to our original CUDA/C++
implementation, significant progress has also been achieved on various fronts in our parallel
implementations using performance portability frameworks. Most recently, this work has focused
on the SYCL implementation, while the developments using Kokkos have slowed down and
those based on Alpaka have stopped. As noted in Ref. [1], the main interest of these APIs
is that a single code base, with a few back-end-specific customizations, may be executed on
many architectures, including GPUs from different vendors such as NVidia, AMD and Intel.
This is shown in Fig. 3, which compares the performances of our CUDA, SYCL and Kokkos

Figure 3. Comparison of the CUDA, Kokkos and SYCL ME engines for gg→ tt̄gg on
many GPUs, using the standalone application (with optimal GPU grid sizes at the throughput
plateau). “Xe-HP SDV” is a Software Development Vehicle for functional testing only, currently
used at Argonne and at other customer sites to prepare their code for future Intel data centre
GPUs. “XE-HPC” is an early implementation of the Aurora GPU. The throughput achieved
on a full Xeon 8180 CPU using SYCL and Kokkos multi-threading is also shown for reference.



Figure 4. Comparison [18] of gg→ tt̄gg throughputs for different C++ builds, using five
vectorization levels, three compilers (gcc12.1; clang14.0; icx2023, based on clang16.0) and
two inlining approaches. The inl0 default build uses no inlining, the inl1 experimental build
(which mimics some features of link time optimization) forces the inlining of helicity amplitude
functions. Rather than absolute throughputs, all data points in each plot (left for double, right
for single precision) represent the ratios to the throughput gcc12.1 inl0 build with no SIMD.

implementations on different systems; compared to previous results [1], this ACAT2022 plot
is interesting because it also includes results on Intel XE-HPC, which is an early implementation
of the Aurora GPU. A notable achievement reported at ACAT2022 is that the SYCL
implementation of the ME calculation is now also fully integrated into MadEvent, which means
for instance that we are able to produce cross-sections and LHE event data files by offloading
the ME calculation to AMD or Intel GPUs, rather than using the Fortran CPU implementation.

A more recent development, which started well after ACAT2022, is that a vectorized SYCL
implementation for CPU has also been prototyped. Preliminary tests indicate that this achieves
a promising performance, with throughputs which sometimes exceed those of the gcc builds
of the CUDA/C++ implementation: while this is not yet understood and will require further
studies, it is likely that this may be due at least in part to the fact that the SYCL implementation
is built using the clang-based icx Intel compiler. As shown in Fig. 4, in fact, which presents a
recent [18] performance comparison between many builds of the CUDA/C++ implementation
using different C++ compilers, we have observed that the performance of icx builds is almost
the same as that of clang builds, which can be significantly better than that of gcc builds in some
cases (more than a factor 2 faster with AVX512/zmm vectorization and agressive inlining); these
results are however preliminary and will need more in-depth analysis. It is also interesting to note
that, while our CUDA/C++ implementation of vectorization is based on gcc and clang compiler
vector extensions, our SYCL version uses the sycl::vec type, which is itself implemented as a
wrapper over clang vector extensions: in other words, compiler vector extensions are ultimately
used for CPU vectorization in both of our CUDA/C++ and SYCL implementations.

5. Outlook: towards a first alpha release
Finally, the most important progress we achieved since ACAT2022 is that we completed the
implementation of the event-by-event random choice of leading colors and helicities in LHE files.
This was the last missing piece before we could provide in the CUDA/C++MadEvent framework
the full set of features needed by the LHC experiments for unweighted event generation. This
functionality is now essentially complete, but we are still performing some final tests, also to
understand its impact on performance; in particular, this feature introduces a minor level of
stochastic branching in the ME workflow, degrading lockstep processing both on GPUs and on
vector CPUs (it is possible that this effect is already visible in Fig. 4, which was prepared using
this more recent code base). We are now working towards repackaging our work to provide a
first alpha release of our work for the experiments, which we plan to achieve during Q2 2023.



Acknowledgements
This research used resources of the Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility under contract DE-AC02-06CH11357, and of the Joint Laboratory
for System Evaluation (JLSE) at Argonne National Laboratory. We also gratefully acknowledge
the use of computing resources at CINECA under ISCRA-C project MG5A100 and at the Jülich
Supercomputing Centre at Forschungszentrum Jülich under PRACE-DEV-2022D01-022.

References
[1] A. Valassi et al., PoS(ICHEP2022)212 (2022). https://doi.org/10.22323/1.414.0212
[2] J. Alwall et al., JHEP07(2014)079. https://doi.org/10.1007/JHEP07(2014)079
[3] A. Valassi et al., EPJ Web of Conferences 251, 03045 (2021). https://doi.org/10.1051/epjconf/202125103045
[4] S. Hageböck, CHEP2023 presentation, https://indico.jlab.org/event/459/contributions/11829/
[5] Z. Wettersten, CHEP2023 presentation, https://indico.jlab.org/event/459/contributions/11850/
[6] K. Hagiwara et al., Eur. Phys. J. C 66 (2010) 477. https://doi.org/10.1140/epjc/s10052-010-1276-8
[7] K. Hagiwara et al., Eur. Phys. J. C 70 (2010) 513. https://doi.org/10.1140/epjc/s10052-010-1465-5
[8] S. Carrazza et al., EPJ Web of Conferences 251, 03022 (2021). https://doi.org/10.1051/epjconf/202125103022
[9] S. Carrazza et al., Eur. Phys. J. C 81 (2021) 656. https://doi.org/10.1140/epjc/s10052-021-09443-8
[10] W. Giele et al., Eur. Phys. J. C 71 (2011) 1703. https://doi.org/10.1140/epjc/s10052-011-1703-5
[11] E. Bothmann et al., SciPost Phys. Codebases 3 (2022). https://doi.org/10.21468/SciPostPhysCodeb.3
[12] E. Bothmann et al., arxiv:2311.06198.
[13] F. Maltoni, T. Stelzer, JHEP02(2003)027. https://doi.org/10.1088/1126-6708/2003/02/027
[14] M. L. Mangano et al., Nucl. Phys. B 632 (2002) 343. https://doi.org/10.1016/S0550-3213(02)00249-3
[15] J. Alwall et al., Eur. Phys. J. C 53 (2008) 473. https://doi.org/10.1140/epjc/s10052-007-0490-5
[16] G. M. Amdahl, Computer 46 (2013) 38. https://doi.org/10.1109/MC.2013.418
[17] D. Giordano et al., Comput Softw Big Sci 5, 28 (2021). https://doi.org/10.1007/s41781-021-00074-y
[18] A. Valassi, CERN Openlab workshop (March 2023), https://indico.cern.ch/event/1225408/contributions/5243830/

https://doi.org/10.22323/1.414.0212
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1051/epjconf/202125103045
https://indico.jlab.org/event/459/contributions/11829/
https://indico.jlab.org/event/459/contributions/11850/
https://doi.org/10.1140/epjc/s10052-010-1276-8
https://doi.org/10.1140/epjc/s10052-010-1465-5
https://doi.org/10.1051/epjconf/202125103022
https://doi.org/10.1140/epjc/s10052-021-09443-8
https://doi.org/10.1140/epjc/s10052-011-1703-5
https://doi.org/10.21468/SciPostPhysCodeb.3
https://arxiv.org/abs/2311.06198
https://doi.org/10.1088/1126-6708/2003/02/027
https://doi.org/10.1016/S0550-3213(02)00249-3
https://doi.org/10.1140/epjc/s10052-007-0490-5
https://doi.org/10.1109/MC.2013.418
https://doi.org/10.1007/s41781-021-00074-y
https://indico.cern.ch/event/1225408/contributions/5243830/

