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Abstract. The ability to calculate analytic full-colour two-to-three two-loop helicity
amplitudes in massless QCD has been a recent triumph of the field, driving phenomenology
towards one percent precision. In this contribution, we focus on the virtual correction of
diphoton-plus-jet production via gluon fusion, gg → gγγ. We outline state-of-the-art strategies
to optimise the reconstruction over finite fields of the rational coefficients of the amplitude. We
also present an updated performance analysis of our publicly-available C++ implementation of
the amplitude, demonstrating its typical speed and stability, and study its stability in infrared
regions of phase space. These results are relevant for improving predictions in Higgs physics at
hadron colliders.

1. Introduction
Precise theoretical predictions are in high demand for the current Large Hadron Collider
experiments, which aim to better understand the properties of the Standard Model while
indirectly probing for new physics through tiny deviations. With experimental bottlenecks
like the determination of interaction luminosity at around one percent [1, 2] and similarly for
the resolution of jet energies [3, 4], the current target for theory is to also achieve one percent
precision [5]. In the near future, the High Luminosity upgrade will also overcome statistical
limitations [6]. Fixed-order matrix elements are one of several ingredients in theoretical
predictions requiring improvement to achieve this goal.

Due to the relatively large size of the strong coupling constant αs, next-to-next-to-leading
order (NNLO) corrections in quantum chromodynamics (QCD) are desirable for a wide variety
of processes. In particular, the challenge of two-to-three scattering processes has been met with
the development of new methods capable of overcoming their algebraic and analytic complexity.
We are now seeing the first calculations of such amplitudes and distributions in massless and
single-external-mass configurations [7–11].

Diphoton production is an important experimental signature at hadron colliders [12] and can
be used to study the Higgs boson through its decay to photons. Diphoton-plus-jet signatures,
pp → jγγ, form the largest background to Higgs production at high transverse momenta.
Leading-colour NNLO distributions [8] and full-colour two-loop amplitudes [13] for this process
have been calculated. The distributions display good perturbative convergence except in regions
where the gluon-fusion subprocess, first appearing at NNLO, is relatively large. Our calculation



of the full-colour two-loop gg → gγγ amplitudes [9] contribute at next-to-leading order (NLO)
in the gluon-fusion subprocess and have been used for full-colour distributions [14] at this order.
Their inclusion in the full process calculation offers to tame the scale uncertainties in these
regions of phase space.

2. Computation of analytic expression
Our aim is to obtain analytic expressions for two-loop helicity amplitudes. We organise the
colour-ordered amplitudes, or rather their finite remainders F after infrared subtraction, as

F (x) =
∑
i

ri(x)fi(x), (1)

where x denotes the set of independent variables in some kinematic parametrisation, ri are
rational coefficients, and fi are special functions resulting from the integrals. We use momentum
twistor variables for x [15] and monomials of the pentagon functions for fi [16, 17].

In our workflow [9, 18], we perform the bulk of the computation numerically to bypass
intermediate complexity of analytic expressions. We evaluate using finite field arithmetic [19] to
avoid the precision-loss problems of floating-point numbers. We start from Feynman diagrams
and process to a form where the integral coefficients can be loaded into a FiniteFlow [20]
dataflow graph. Further manipulation, including coefficient mappings, integration-by-parts
reduction, projection to the pentagon function basis, Laurent expansion in the dimensional
regulator, and finally multivariate reconstruction of the ri from numerical evaluations over finite
fields, proceed within FiniteFlow. We obtain compact analytic forms of ri as output, which
can be implemented in libraries for efficient evaluation as in Section 3.

The full details of the gg → gγγ reconstruction are presented in Ref. [9]. Here, we highlight
some optimisation strategies used to speed up the reconstruction by reducing the required
number of sample points.

2.1. Linear relations in the coefficients
The representation Eq. (1) is suboptimal as there are linear relations between the ri. Expressing
in terms of a set of linearly independent ri simplifies the reconstruction. We can determine the
linear relations by solving the linear fit,∑

i

ai ri(x) = 0 . (2)

When choosing the linearly independent subset, preferring simpler ri further optimises the
reconstruction. We use polynomial degrees to estimate the complexity of expressions.

2.2. Matching factors in the denominator
The pole structure of the pentagon functions is determined by the letters of the pentagon
alphabet, {ℓk} [21]. Expecting the poles of the rational coefficients to be linked to those of the
special functions they multiply, we make for each coefficient the ansatz,

r(x) =
n(x)∏

k ℓk
ek(x)

, (3)

where ek are integers and n(x) is a polynomial in the variables x. We determine the ek by
reconstructing r on a univariate slice [22], defined by parametrising the variables x by a single
parameter t as x(t) = c0 + c1t, with vectors ci constant and randomly assigned, and matching
the reconstructed r(t) := r(x(t)) with Eq. (3) evaluated on the same slice. This entirely fixes the
denominator, as well as some factors of the numerator appearing with negative ek, simplifying
the reconstruction.



2.3. Univariate partial fraction decomposition
Partial fractioning of rational functions can yield more compact expressions. To simplify the
reconstruction, we reconstruct the coefficients in a form which is decomposed in univariate
partial fractions.

Let us consider the partial fractioning of a rational function with respect to the variable y.
As discussed in Section 2.2, we can infer the y-dependent part of the denominator. For example,
we could obtain, with its parametrised decomposition,

r(x, y) =
n(x, y)

y2(x2 + y2)
=

q1(x)

y
+

q2(x) + q3(x)y

y2
+

q4(x) + q5(x)y

x2 + y2
+

d−4∑
i=0

q6+i(x) y
i. (4)

The undetermined part of r(x, y) is n(x, y), which has degree d in y. To determine d, we
reconstruct n(x, y) on a univariate slice varying only y, {x(t) = c, y(t) = t}, with c constant,
such that d is given by the degree in t of n(t). The 4 in the sum of Eq. (4) is the maximal
degree in y of the denominator of r(x, y). We then reconstruct the qi(x) using a linear fit in
FiniteFlow over numerical evaluations of r(x, y). Since the fit involves several evaluations, each
sample of {qi(x)} in the reconstruction is more expensive than that of r(x, y), but depends on one
fewer variable and has substantially lower degrees, so fewer samples are required. Therefore,
the partial fractioned reconstruction can outperform the direct one, particularly for complex
functions such as those appearing at two loops. The choice of y is crucial; testing at lower loop
orders can quickly inform this decision.

3. Library implementation
The ℓ-loop finite remainders F (ℓ) are implemented in the NJet C++ library [23], which is linked
to the PentagonFunctions++ library [17] for the evaluation of the special functions. The
decomposition of the finite remainders is detailed in Ref. [9]. The code returns the value and
error, estimated using the dimension scaling test, for the colour- and helicity-summed (denoted
by ⊗) hard functions, H(1) and H(2),

H =
α2α3

s

(4π)5

(
H(1) +

αs

4π
H(2)

)
+O(α5

s),

H(1) = F (1) ⊗F (1),

H(2) = F (2) ⊗F (1).

(5)

We provide an evaluation strategy that reevaluates the result with higher precision floating-
point numbers if a user-provided target accuracy is not achieved. The code is templated so
that we can use native 64-bit floating-point numbers (f64s) and 128-bit floating-point numbers
(f128s) from QD [24] to evaluate the rational coefficients and special functions with independent
precisions. Labelling the coefficients first and the special functions second, we define three tiers:
f64/f64, f128/f64, and f128/f128.

4. Performance
To assess the stability and speed of our implementation, we evaluate the hard function H(2)

over 100 k points with a minimum target accuracy of three digits (corresponding to a maximum
relative error of 10−3). The phase-space sampling density is determined by the leading order
process, obtained from NNLOjet [25], to ensure a realistic setup regarding Monte Carlo cross-
section calculations. We use NJet v3.1.1 with dependencies Eigen v3.4.0 [26], QD v2.3.23, and
PentagonFunctions++ v2.0.1. We compile with GCC v12.1.1 on Rocky Linux 8.7. We run the
test on a machine with dual Intel Xeon Gold 5218 CPUs running at 2.3GHz under full compute
load over 64 Hyper-Thread cores.
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Figure 1. Histogram of the error estimate of the H(2) evaluations as given by the dimension
scaling test. We use the evaluation strategy with a target accuracy of three digits, denoted by
the vertical solid black line, and show errors for all precision levels as well as the cumulative
error on all passing points. A cumulative bin of height h at d digits indicates h proportion of
points have an accuracy of at best d digits.

To demonstrate the stability, we histogram the H(2) errors in Fig. 1. We see 1.3% of points
failing f64/f64 evaluation, with 0.8% passing at f128/f64 and 0.5% passing at f128/f128.
There is a double-humped shape to the f128/f64 histogram; since f128/f128 reevaluations
vastly improve the accuracy, the left hump appears to correlate with points that are limited in
accuracy by the pentagon functions, showing that the stability bottleneck lies in the numerical
evaluation of the special functions. The evaluation strategy achieves the target accuracy for all
points.

We find a single f64/f64 call has a mean time of 2.6 s with 96% in evaluation of pentagon
functions. Using the evaluation strategy with three digit target accuracy, we obtain a mean
timing per phase-space point of 7.4 s with 99% in evaluation of pentagon functions. The
bottleneck for evaluation speed is clearly also in the special functions.

These timing results are improved from the original tests reported in Ref. [9]. Since then, we
have made some improvements to NJet while implementing the five-parton scattering channels
released in v3.1.0 [27], are using newer development servers, and most significantly are using the
updated version of PentagonFunctions++ [17].

5. Infrared stability
We prepare another phase space using the prescription of Ref. [28], generating a 100-point
slice that approaches an infrared limit. The method generates a five-particle phase space
in a collinear parametrisation from a four-particle phase space, described in Section 2.4.1 of
Ref. [27]. We perform this for ten different four-particle seeds and plot the mean, to avoid any
irregularities that may arise when approaching the limit in an exceptional direction, in Fig. 2.
The lower precision evaluations diverge at around s34/s12 = 10−4. The origin of this numerical
divergence lies in the evaluation of the pentagon functions as it is not fixed by the f128/f64
evaluation, which agrees with the conclusion on stability bottlenecks in Section 4. Evaluation in
f128/f128 remains unproblematic deep into the limit; it does not begin to diverge until below
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Figure 2. Plot of the value of H(2) normalised by H(1) and averaged over ten slices of phase
space which drive towards a collinear limit in the first two outgoing legs. The error band is
given by the dimension scaling test with H(1) and H(2) errors added in quadrature. Evaluations
are made using the evaluation strategy with a target of three digits. Where it is not visible, the
f64/f64 (blue) line coincides with the f128/f64 (orange) line.

s34/s12 = 10−9.
The same infrared stability test was performed on the leading-colour double-virtual

amplitudes for NNLO trijet production at hadron colliders, pp → jjj [27]. Comparatively, the
limit of stability is reached much sooner in the full-colour gg → gγγ calculation, as is expected
due to the higher complexity of the additional non-planar topologies. However, if evaluations
were required deeper into the infrared, the evaluation strategy could simply be extended to
include 256-bit floating-point number (f256) evaluations via QD, although this would incur a
large runtime penalty.

This demonstrates that the amplitudes are suitable not only for integrating over the two-
to-three virtual phase space at NLO, but also the more difficult two-to-two real-virtual phase
space at NNLO. In fact, with libraries such as NJet and OpenLoops2 [14, 29] and the recent
calculation of the full-colour three-loop gg → γγ amplitudes [30], all amplitude ingredients are
now available for such a calculation.

6. Conclusion
We discussed the current state of full-colour two-to-three two-loop amplitudes in massless QCD,
focussing on the example of gg → gγγ. We reviewed some optimisation strategies for the
reconstruction of these amplitudes from numerical evaluations over finite fields. Then we tested
the performance of our C++ library implementation, showing it to be fast and stable, even when
pushed towards infrared limits. The results demonstrate the readiness of this class of amplitudes
to be used in precision studies in the percent-level era of phenomenology.
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