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Abstract. The computation of loop integrals is required in high energy physics to account for higher-
order corrections of the interaction cross section in perturbative quantum field theory. Depending on
internal masses and external momenta, loop integrals may suffer from singularities where the integrand
denominator vanishes at the boundaries, and/or in the interior of the integration domain. To handle a
threshold singularity originating from a vanishing denominator in the interior of the domain, we add a term
(of the form −i%) in the denominator, and perform a nonlinear extrapolation to a sequence of integrals
obtained for a (geometrically) decreasing sequence of %.

The integral behavior may also be affected by UV singularities, which we treat using dimensional
regularization, where the space-time dimension ν = 4 is replaced by ν = 4−2ε for a sequence of ε values,
and a linear extrapolation is applied as ε tends to zero. Presence of both types of singularities may warrant
a double extrapolation. In this paper we will devise and apply a strategy for loop integral computations
by combining these methods as needed for a set of Feynman diagrams. In view of the compute-intensive
nature, the code is further multi-threaded to run in a shared memory environment.

1. Introduction
Accurate theoretical predictions are needed in view of improvements in the technology of high energy
physics experiments. Higher order corrections are required for accurate theoretical predictions of the
cross-section for particle interactions. The Feynman diagrammatic approach is commonly used to
address higher order corrections, and Feynman loop integrals arise in the calculations. Loop integrals
may suffer from integrand singularities or irregularities at the boundaries and/or in the interior of the
integration domain (for physical kinematics). Symbolic or symbolic/numerical calculations have been
performed for challenging problems [1], and there are continuous efforts to develop software packages
for the evaluation of loop integrals using numerical approaches, such as pySecDec [2, 3, 4], feyntrop [5],
FIESTA [6], and MBnumerics [7].

In previous work we implemented iterated integration numerically using one- or low-dimensional
adaptive integration algorithms in subsequent coordinate directions, enabling intensive subdivision in
the vicinity of singularities. To handle a singularity in the domain interior, we add a term −i% in the
denominator, and perform a nonlinear extrapolation (as % → 0) on a sequence of integrals obtained for
a (geometrically) decreasing sequence of %. UV singularities are treated by dimensional regularization,
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Figure 1: Sample 2-loop diagrams (a) Lemon-1 (1, 1, 1, 1),N = 4; (b) Lemon-2 (MZ ,MW ,MW ,Mχ),
N = 4; (c) Magdeburg, N = 5

where the space-time dimension ν = 4 is replaced by ν = 4− 2ε for a sequence of ε values, and a linear
extrapolation is applied as ε→ 0. Presence of both types of singularities warrants a double extrapolation.
Some of the code is further multi-threaded to run in a shared memory environment. We will demonstrate
combinations of the methods for sample diagrams.

2. Feynman Loop Integrals
2.1. Representation
The scalar L-loop integral with N internal lines is represented by

I = Γ(N − νL
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where V = M2−W/U, M2 =
∑

rm
2
rxr; U andW are polynomials determined by the topology of the

corresponding diagram and physical parameters; ν = 4−2ε is the space-time dimension; % = 0 unless V
vanishes within the domain; CN is theN -dimensional unit hypercube and Sd = {x ∈ Cd |

∑d
j=1 xj ≤ 1}

is the d-dimensional unit simplex.
Note that, whether V or M2U −W is used for subsequent computations, the extrapolated results will

remain similar as long as the numerical integration for each ρ is performed with good accuracy.

2.2. Asymptotics
The integrals computed in this paper satisfy an asymptotic expansion of the form

I = I(ε) ∼
∑
k≥κ

Ck ε
k as ε→ 0

For the cases considered here, we have κ = −2 for Fig. 1 (a) and (b), so that

I(ε) ∼ C−2/ε
2 + C−1/ε+ C0 + . . . (2)

Analytic derivations of the asymptotic behavior for 2-loop self-energy integrals were given in [8].

2.3. Sample 2-loop Diagrams
We give results for the diagrams of Fig. 1. For the loop integrals corresponding to the Lemon-1, 2



diagrams of Fig. 1 (a) and (b), respectively, we have

U = x12x34 + x1x2, W = s (x4(x1x2 + x1x3 + x2x3)), with xk`...n = xk + x` + . . .+ xn

Here we assign the masses (m1,m2,m3,m4) as (MH ,MH ,MH ,MH) for the Lemon-1 diagram,
and as (MZ ,MW ,MW ,Mχ) for Lemon-2. Measuring the particle masses using the Higgs mass as the
unit, we have MW = 0.64308, MZ = 0.7295008 and Mχ = MW , and subsequently we simply express
(MH ,MH ,MH ,MH) as (1, 1, 1, 1).

The Magdeburg integral with the masses (m1,m2,m3,m4,m5) satisfies

U = x12x34 + x1234x5, W = s (x1x2x34 + x3x4x12 + x13x24x5)

and we compute the case (1, 1, 1, 1, 1).

3. Methods
3.1. Iterated Automatic Adaptive Integration
3.1.1. Automatic Integration. Automatic integration employs a black-box approach to produce (as
outputs) an approximation Q(f) to an integral If =

∫
D f(~x) d~x, and an error estimate Ef of the actual

error Ef = |Qf − If |, in order to satisfy an accuracy requirement of the form

|Qf − If | ≤ Ef ≤ max { ta , tr |If | },

where the integrand function f, region D and (absolute/relative) error tolerances ta and tr, respectively,
are specified as part of the input.

3.1.2. Automatic Adaptive Integration. This is a category of Automatic Integration (cf., Section 3.1.1),
applied adaptively (by region partitioning). The meta-algorithm of Fig. 2 is implemented in the Quadpack
programs DQAGE and DQAGSE. The latter applies a nonlinear extrapolation in addition to the DQAGE
global adaptive strategy [9, 10, 11].

Evaluate initial region and update results
Initialize priority queue with initial region
while (evaluation limit not reached and

estimated error too large)
Retrieve region from priority queue
Split region into subregions
Evaluate new subregions and update results
Insert new subregions into priority queue

Figure 2: Adaptive Integration Meta-Algorithm

3.1.3. [Parallel] Iterated Adaptive Integration. This is a category of Automatic Adaptive Integration
(cf., Section 3.1.2), applied in consecutive coordinate directions. Integration over a finite d-dimensional
product region can be written as

I =

∫ β1

α1

dx1

∫ β2

α2

dx2 . . .

∫ βd

αd

dxd f (x1, x2, . . . , xd)



The limits of integration may in general be functions, αj = αj(x1, x2, . . . , xj−1) and βj =
βj(x1, x2, . . . , xj−1). For relatively small d, we can integrate over the interval [αj , βj ] with a 1D adap-
tive integration code.

Subsequently, we give results obtained with adaptive iterated or parallel adaptive iterated integration
(cf., Section 3.1.3) by versions of the programs DQAGE and DQAGSE from QUADPACK [9, 10], where
the local integration is performed with the (7, 15)- or the (10, 21)-points Gauss-Kronrod pairs. The
inner integrals are independent and can be evaluated in parallel by multiple threads [12] (using, e.g.,
OpenMP [13]). Important properties of this parallelization include: (1) a large granularity of the parallel
integration, involving the inner integrations; (2) possibly apart from numerical implications resulting
from the order of the summation in the local rule evaluation, the parallel calculation is the same as the
sequential evaluation.

3.2. Double Extrapolation
Linear extrapolation is based on an asymptotic expansion of the form

I(ε) ∼
∑
k≥κ

Ck ϕk(ε), as ε→ 0 (3)

where the sequence of ϕk(ε) is known. For the diagrams of Fig. 1, ϕk(ε) = εk. The expansion is
truncated after 2, 3, . . . , n terms to form linear systems of increasing size in the Ck variables. This is a
generalized form of Richardson extrapolation [14, 15].

For fixed ε = ε`, the integral (1) may have singularities as % → 0. Since an asymptotic expansion in
% is unknown, we apply a nonlinear extrapolation with the ε-algorithm [16] to a sequence of I(ε`, %) as
%→ 0. The combined ε and % extrapolations constitute a double extrapolation [17, 18, 19, 20].

The nonlinear extrapolation results given in this paper are achieved with an implementation of the
ε-algorithm from QUADPACK [9].

4. Computational Results
4.1. Asymptotic coefficients for Lemon-1, 2
The computations were performed under GNU/Linux on a multicore x86 64 machine with Intel(R)
Xeon(R) Gold (dual) 6230 CPU@2.10 GHz.

We report sample results, for the diagrams of Fig. 1 with masses as specified in Section 2.3 using
iterated adaptive or parallel iterated adaptive integration, encompassing the methods of Sections 3.1.1 -
3.1.3 and double extrapolation (Section 3.2). Fig. 3 (a) plots the asymptotic expansion coefficients
C−2, C−1, C0 as a function of s for the Lemon-1 (1, 1, 1, 1) integral. A pronounced 2-particle threshold
is shown at s = (1 + 1)2 = 4. The 3-particle threshold at s = (1 + 1 + 1)2 = 9 is not pronounced.

The computation involves several approximation procedures: the numerical integrations, the
nonlinear extrapolation in % for each value of ε, and the linear extrapolations in ε. A fixed number
of extrapolations is performed in %. For the linear extrapolation, a sequence of linear systems is solved
and error estimates are produced based on the convergence of the sequence, which allows selecting the
final result and giving a range for the error.

We found good agreement with results from pySecDec 1.4.5 [3], as the graphs appear
indistinguishable (except for s = 4, where pySecDec returns 0). Furthermore for s = 1, we compared
our results with the known values from [22] and confirmed their agreement. While a single extrapolation
suffices for s < 4, a double extrapolation is necessary when imaginary parts enter at the 2-particle
threshold.

Similar results are displayed in Fig. 3 (b) for Lemon-2 with the masses given in Section 2.3. A
pronounced 2-particle threshold is revealed at s = (2 × 0.64308)2 = 1.6542075456. No 3-particle
threshold is shown at s = (2 × 0.64308 + 0.7295008)2 = 4.06288846065664.
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Figure 3: (a) Lemon-1 (1, 1, 1, 1) expansion coefficients C−2, C−1, C0 as a function of s, results are
multiplied with 1

Γ(1+ε)2
; (b) Lemon-2 (MZ ,MW ,MW ,Mχ) expansion coefficients C−2, C−1, C0 as

a function of s, MW = 0.64308, MZ = 0.7295008, Mχ = MW in the unit of the Higgs mass. In the
computations for (a) and (b), DQAGSE is used for the integration.
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Figure 4: Magdeburg (1,1,1,1,1) parallel times [sec] of DQAGE as a function of #threads, with DQAGE
keys 2, 2, 2, 2 (Gauss-Kronrod rule pair with 10-21 points for the local integrations), s = 1, ε = 0,
extrapolation for % = 1.2−17, 1.2−18, . . . , 1.2−31.

For the Lemon (1, 1, 1, 1) diagram as an example, the real parts of C−2, C−1, and C0 incur the largest
relative errors near the thresholds of s = 4 and 9. Apart from these, the ranges of accuracy are generally
about 9 to 11 digits for C−2, 6 to 9 digits for C−1, and about 4 to 7 digits for C0. For the imaginary parts,
in the range from s = 4.05 to 10, the largest relative errors are also near the thresholds (although less
pronounced than for the real parts). Excluding around the thresholds, in the range from s = 4.5 to 10,
the accuracy is about 8 to 10 digits for C−1, and about 6 to 9 digits for C0.

In the case of Magdeburg, we have κ = 0 in the asymptotic series, and results for the coefficient C0,
for mass assignments (1, 1, 1, 1,Mx) with Mx = 0, 1, 2 were given in [19].

The execution time is dominated by the integration times, which are in turn determined by parameters
such as the total number of integration points and/or subdivisions allowed, and the target accuracy.
Below we discuss timings (from sequential runs) for the Lemon-1 real parts. For the integrations,
the absolute error tolerance is set as ta = 0; the relative tolerance is tr = 10−12 for the outer



integration, and 5 × 10−13 for the inner integrations. Using a Bulirsch type sequence [21] for ε such
as (1/4, 1/6, 1/8, 1/12, 1/16, 1/24, . . . , 1/384, 1/512) and the geometric sequence 2−1, . . . , 2−13 for
ρ, we report the maximum times over the ranges of ε and ρ for s = 1, and the minimum and maximum
times for s = 8 (even though the sequence for ε is only used up to convergence of the extrapolation).
With s = 1, the maximum times occur at various values of ρ; with s = 8, they almost always occur at the
smallest values of ρ (where they are also the highest). For s = 1, the maximum times vary between 1.2
and 4.4 seconds, whereas for s = 8, they vary between 35.3 and 172.8 seconds. For s = 8, the minimum
times vary between 2 and 4.4 seconds.

4.2. Parallelization Results for Magdeburg
Parallel timing results (in seconds) of the DQAGE program using OpenMP are given for Magdeburg as
a function of the #threads. The meta-algorithm of Fig. 2 is applied in consecutive coordinate directions,
and the outer direction is parallelized in this case. DQAGE incorporates several Gauss-Kronrod rule
pairs for its local integral approximation over an interval [a, b]. For this instance we used the Gauss 10-
point - Kronrod 21-point integration formulas (specified by input parameter key = 2 for DQAGE). The
absolute and relative error tolerances were set to ta = 0 and tr = 10−13, respectively. With a limit of 30
on the number of subdivisions allowed, no error flags were given, corresponding to reporting a regular
termination of the algorithm for the target accuracy in each coordinate direction.

Furthermore, for s = 1 and ε = 0, a single nonlinear extrapolation was performed with % =
1.2−17, 1.2−18, . . . , 1.2−31. Fig. 4 shows a significant decrease in time from 1 to about 20 threads, after
which it flattens out (without, however, incurring a considerable increase due to parallel overhead).

5. Conclusions
Whereas symbolic or symbolic/numerical calculations are performed for some challenging problems
using existing software packages, we focus on the development of fully numerical methods for the
evaluation of Feynman loop integrals. The integration strategies adhere to automatic adaptive integration,
which is a black-box approach for generating an approximation, assuming little or no knowledge of the
problem, apart from the specification of the integrand function. We demonstrated efficient strategies
based on iterated adaptive integration, multithreading with OpenMP, and double extrapolation.

Acknowledgments
We acknowledge the support by JSPS KAKENHI Grant Number JP20K11858 and JP20K03941, and the
National Science Foundation Award Number 1126438 that funded work on multivariate integration.

References
[1] Freitas A 2016 Progress in Particle and Nuclear Physics 90 201–240 https://doi.org/10.1016/j.ppnp.2016.06.004
[2] Heinrich G, Jones S P, , Kerner M, Magerya V, Olsson A and Schlenk J 2024 Computer Physics Communications 295

https://doi.org/10.1016/j.cpc.2023.108956; arXiv:2305.19768v2 [hep-ph]
[3] Borowka S, Heinrich G, Jahn S, Jones S P, Kerner M and Schlenk J 2019 Computer Physics Communications 240 120–137

DOI:10.1016/j.cpc.2019.02.015, arXiv:1811.11720v1 [hep-ph], https://arxiv.org/abs/1811.11720
[4] Borowka S, Heinrich G, Jahn S, Jones S P, Kerner M, Schlenk J and Zirke T 2018 Computer Physics Communications

222 313–326 https://doi.org/10.1016/j.cpc.2017.09.015
[5] Borinsky M, Munch H J and Tellander F 2023 Computer Physics Communications 292 108874, arXiv:2302.08955v2

[hep-ph], https://doi.org/10.1016/j.cpc.2023.108874
[6] Smirnov A V, Shapurov N D and Vysotsky L I 2021 Computer Physics Communications 277 108386,

https://doi.org/10.1016/j.cpc.2022.108386, arXiv:2110.11660
[7] Usovitsch J, Dubovyk I and Riemann T 2018 PoS LL2018 046 1810.04580 [hep-ph], DOI: 10.22323/1.303.0046
[8] Kato K March 2022 Note on 2-loop self-energy scalar integrals Department of Physics, Kogakuin University Shinjuku,

Japan, Private communication
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