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Abstract. The estimation of probability density functions is a non trivial task that over
the last years has been tackled with machine learning techniques. Successful applications
can be obtained using models inspired by the Boltzmann machine (BM) architecture. In
this manuscript, the product Jacobi-Theta Boltzmann machine (pJTBM) is introduced as a
restricted version of the Riemann-Theta Boltzmann machine (RTBM) with diagonal hidden
sector connection matrix. We show that score matching, based on the Fisher divergence, can be
used to fit probability densities with the pJTBM more efficiently than with the original RTBM.

1. Introduction
The modelling of general probability density functions (PDFs) is a difficult task, even in the
one-dimensional setting. Perhaps most commonly applied for this purpose is the method of
kernel density estimation (KDE) [1]. Though often KDE yields a relatively good approximation
to the underlying density in small dimensions, its general modelling capacity is limited as only
the type of kernel and hyperparameter bandwidth are optimizable degrees of freedom.

More recently, significant success in modelling arbitrary probability densities, in particular in
the high dimensional setting, has been achieved with new models like variational autoencoders
(VAE) [2] and normalizing flows [3, 4]. Though these models shine in their modelling capacity
and ability to easily draw samples from the modelled densities, obtaining derived quantities like
moments, cumulative density functions, conditionals or marginalizations, is not straight-forward.

Unrelated to the above developments, another novel method has been proposed in recent years
to model arbitrary probability densities [5]. The method is based on a generalization of the well-
known Boltzmann machine [6], dubbed Riemann-Theta Boltzmann machine [5] (RTBM). The
RTBM features a novel parametric density involving the Riemann-Theta (RT) function, which
possesses a significant modelling capacity. The analytic expression for the density allows to
explicitly calculate derived quantities. However, one drawback of the RTBM, which hindered
so far a wider usage, is that it is computationally expensive, in particular for high dimensional



hidden state spaces. The reason being that the computational burden of the RT function scales
exponentially with the dimension d.

As a step to overcome this computational challenge, we introduce in this work a simplified
version of the RTBM by making use of a factorizing property of the RT function. This simplified
version, which we will refer to as product Jacobi-Theta Boltzmann machine, is very suitable for
a more efficient optimization (training) using the score matching method of [7].

As we will demonstrate experimentally on two and three-dimensional examples, this simplified
model yields a significant improvement over the original RTBM based modelling.

1.1. Riemann-Theta Boltzmann machine
The Riemann-Theta Boltzmann machine (RTBM) is a novel variant of a Boltzmann machine,
introduced in [5]. The RTBM is defined by the following energy model:
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where A is a positive-definite N × N matrix and B a N dimensional bias vector. For reasons
becoming more clear below, x, B and A are decomposed into a visible sector v of dimension
Nv and a hidden sector h of dimension Nh so that N = Nv + Nh. In detail, Q corresponds to
the connection matrix of the hidden sector, T to the connection matrix of the visible sector and
W encodes the coupling between the two sectors. The Boltzmann distribution for this model is

defined as P (v, h) = e−E(v,h)

Z , where Z denotes the canonical partition function.

The peculiarity of the RTBM is that the hidden state space is taken to be ZNh , while the
visible state space is RNv . This quantization of the hidden state space makes the computation of
the canonical partition function tractable. In particular, by marginalizing out the hidden sector,
a closed form analytic expression for the visible sector probability density function, denoted as
P (v), can be derived as [5]
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where θ̃ is given by the RT function [8] with rescaled arguments, i.e.,

θ̃(z|Ω) := θ

(
z

2πi

∣∣∣ iΩ
2π

)
=

∑
n∈Zk

e−
1
2
ntΩn+ntz . (3)

1.2. Product Jacobi-Theta Boltzmann machine
The general θ-function factorizes for a diagonal second argument matrix Ω into one-dimensional
θ-functions, which are known as Jacobi-Theta functions: θ(z|Ω) = ∏

i θ(zi|(Ω)ii) . Consequently,
θ̃ also factorizes similarly. This factorization has significant computational advantages, as the
computational complexity of the non-factorized θ grows exponentially with the dimension of
Ω. For illustration, we plotted in Fig. 1 a run-time comparison between the factorized and
non-factorized calculation of θ with diagonal Ω: While for small d the factorized computation
run-time grows experimentally as d1.2, the non-factorized shows clearly exponential growth under
increasing k.

A diagonal Q in P (v) corresponds to a hidden sector which is not inter-connected, and
therefore is similar in spirit to the well-known restricted Boltzmann machine, cf., [10]. However,
for a RTBM with diagonal Q, which we will refer to as product Jacobi-Theta Boltzmann Machine
(pJTBM), the θ-function occurring in the normalization of P (v) does in general not factorize, as
that would require that W diagonalizes T−1. Hence, at first sight the computational advantage
of a pJTBM is limited, as the normalization would still be computationally expensive.
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Factorized Riemann Theta

Riemann Theta Figure 1. Average time to evaluate the RT function [9]
for different dimensions d of a diagonal matrix Ω using the
factorized form (yellow curve) and the standard form (light-
blue curve). Note that both axes are plotted in logarithmic
scale. The matrix elements of Ω have been sampled uniformly
from the imaginary unit interval, and we averaged over 10
independent runs. Exponential growth is marked with a gray
dashed-dotted line. A linear regression in log-log space implies
that the average time for the factorized RT grows as ∝ d1.2

with R2 = 0.93.

2. The Fisher cost function
2.1. Introduction
In the original work introducing the RTBM [5] it has been shown that the probability density
of the visible sector P (v) can be used to approximate the underlying density of a given dataset
via maximum likelihood estimation (MLE).

The novel contribution of this work consists in adopting a different learning method for the
RTBM known as score matching, first introduced in [7]. Score matching is particularly efficient
for non-normalized models, i.e., models where the partition function Z cannot be computed
either analytically or numerically. For instance, this can be the case for high-dimensional
densities where the computation of the partition function requires the calculation of a non-trivial
multi-dimensional integral. This parameter learning method can also be exploited for models
where the partition function can be computed, such as the RTBM, but is computationally
expensive: Avoidance of the computation of the partition function during optimization may
strongly accelerate the training process. In particular, this applies to the pJTBM defined above,
for which the normalization is the main remaining computational obstacle.

Suppose that we are trying to model the probability density p(x) using a parametric density
q(x, θ), where θ are the parameters to be optimized. The divergence metric associated with
score matching [7] reads

DF (p||qθ) =
∫

p(x)
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2

dx , (4)

which is often referred to as Fisher divergence or relative Fisher information [11]. It has been
shown [7, 12] that if q(x, θ) is sufficiently regular and differentiable, then we can simplify the
above expression via integration by parts. For a finite sample v of p(x) we obtain (up to an
irrelevant constant)

DF (p||qθ) ≈ CF =

N∑
i=1

∣∣∣∣∣∇vi log q(vi, θ)

∣∣∣∣∣
2

+ 2∆vi log q(vi, θ) , (5)

where ∇ and ∆ denotes the gradient and Laplacian operators, respectively. We refer to CF as
the Fisher cost function.

2.2. Derivation of the Fisher cost function for the RTBM and pJTBM
If we model the probability density p(x) using a RTBM, we can exploit the fact that we have an
analytical expression for q(v, θ), given by P (v) in Eq. 2, to compute explicitly the Fisher cost
function. The two terms in Eq. 5 for CF are given for the RTBM by

∂vi logP (v) = −(Tv)i − (Bv)i + (WD)i , ∂2
vi logP (v) = −Tii + (WHW t)ii + (WD)2i , (6)



with D the normalized gradient and H the normalized Hessian:
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The calculation of D and H can be computationally expensive, especially in the case of
Nh > 1. However, for the pJTBM, i.e., a restricted RTBM with diagonal Q matrix, we can
simplify the above expressions using the fact that the θ-function (and consequently also θ̃)
factorizes. This yields
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Note that, the above simplification is in a computational sense. The complexity of the Fisher
cost function is now growing linearly with Nh, because we have only to compute derivatives of
Jacobi-Theta functions. This motivates us to adopt a dedicated implementation for the Jacobi-
Theta function, which is more efficient, instead of using the RT function implementation of
[9]. For more details about the implementation of the Jacobi-Theta function we refer to the
Appendix.

3. Example
As an example we employ RTBMs to model the empirical bivariate distribution given by the
uranium dataset [13], which is included in the R package copula [14]. We also fit the models to
the empirical joint density of daily log returns of three different equities: AAPL, MSFT and GOOG.

We compare the performance of the standard RTBM, i.e., a generic RTBM optimized via
maximum likelihood estimation of parameters, with a pJTBM trained using the Fisher cost
function, as described in section 2. Note that we make use of the transformation property of the
RTBM under affine transformations [15] to preprocess the data using a z-score normalization
and PCA [16]. In particular, we perform a pre-training step by fitting first the marginals of the
underlying distribution using 1-dimensional RTBM or pJTBM.

At hand of these examples, we want to address two main points: firstly, we aim to quantify
the speed-up achieved using this new learning methodology by benchmarking the time necessary
to run 500 iterations using CMA-ES as optimizer [17]. Secondly, we want to compare the quality
of the fits by using as Goodness-of-Fit test a generalized version of the Kolmogorov-Smirnov
(KS) test called Fasano-Franceschini test (FF) [18]. In particular, we are interested to check
if the pJTBM can achieve a comparable level of accuracy, despite the fewer parameters due to
diagonal Q.

Results are given in Table 1. We observe that the time required to train a pJTBM is
exponentially suppressed compared to the RTBM. This enabled us to push the number of hidden
nodes up to 8 with acceptable computational times under our used optimization scheme. Note
that for the RTBM we could not go beyond Nh = 4 in reasonable time.

The FF values are in general comparable between RTBM and pJTBM under the error bounds.
However, we observe that the variance for the pJTBM is in general larger compared to the
RTBM, despite the lower number of parameters. A possible explanation could be that a model
with diagonal Q is more rigid and therefore has more difficulties to reach a good solution from
a given initial condition.



Nh parameters Execution Time FF

pJTBM 2 13 9.2 s 2.32± 0.23
RTBM 2 14 59.6 s 1.72± 0.10

pJTBM 4 21 20.6 s 1.81± 0.32
RTBM 4 27 5 min 1.50± 0.08

pJTBM 6 29 51.6 s 1.63± 0.22
RTBM 6 44 -

pJTBM 8 37 82.9 s 1.76± 0.32
RTBM 8 65 -

pJTBM 3 24 32.2 s 2.91± 0.24
RTBM 3 27 6 min 2.41± 0.43

Table 1. Execution time
and FF values for RTBM and
pJTBM with different number of
hidden nodes Nh. Each result
is averaged over 10 independent
runs. The results with Nh even
correspond to fitting the models
to the uranium dataset, while for
Nh = 3 the models are fitted
to the joint AAPL, MSFT and GOOG

stock daily log return distribution.
The error on the FF corresponds
to the standard deviation between
10 runs of the training process. A
− indicates that the computation
did not finish in reasonable time.

We believe that under a different optimization scheme (optimization on manifolds), the
pJTBM could become less dependent on initial condition and also more suitable for far higher-
dimensional problems, leading to interesting applications. We hope to investigate this aspect in
future work.
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Figure 2. Contour
plots for the pJTBM (left,
red) and for the RTBM
(right, blue) for the uranium
dataset. The Nh = 4 model
with the lowest FF value
over 10 independent runs is
plotted.

Appendix
The computation of the RT function and its derivatives is computationally challenging, as the
function is defined as an infinite sum over a N -dimensional integer lattice ZN , cf., Eq. 3. For
a general dimension N , the RT function and its derivatives can be calculated up to any desired
precision ϵ via summing over a finite subset of lattice points falling inside an ellipsoid of radius
R(ϵ) [19, 20].

For the purpose of this work we mainly need an efficient implementation of the RT function
and its derivatives for N = 1. A highly efficient implementation has been proposed in [21],
albeit not including the derivatives. For simplicity, we only consider here the naive algorithm
given in [21], because it can be easily generalized to compute as well the derivatives, and gives
us already a significant performance gain compared to [19], see Fig. A1.

The naive algorithm for evaluation of the 1d θ function starts from the partial summation

SB(z,Ω) = 1 +
∑

0<n<B

qn
2
(e2πinz + e−2πinz) =: 1 +

∑
0<n<B

vn , (A.1)

where q = eiπΩ and vn = qn
2
(e2πinz + e−2πinz). One can prove that for specific ranges of Ω and

z there exist a B(ϵ) such that an approximation to the θ function with absolute precision ϵ is
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Figure A1. Relative speed-up factor (t1/t2) between the
execution time of [19] (t1), and the naive algorithm from [21]
extended to the calculation of the derivatives (t2), as described
in the Appendix. The parameters of the RT function have
been sampled uniformly from the imaginary unit interval and
we averaged over 10 independent runs.

obtained. Once bounded, SB can be computed via exploiting the fact that the summands vn
can be computed recursively, i.e., vn+1 = q2nv1vn− q4nvn−1. In the following, we will generalize
this recursive algorithm to the computation of the derivatives. We made an implementation of
this algorithm available inside the Theta (v0.0.2) Python package [22].

Appendix A.1. Partial derivatives of the 1d Riemann-Theta function
The recursive algorithm recalled above can be easily generalized as follows: First, note that it
is not hard to see that the partial sums for the first and second derivative read

UB(z,Ω) =
∑

1<n<B

−4πnqn
2
sin(2πnz) =:

∑
1<n<B

wn ,

VB(z,Ω) =
∑

1<n<B

−8π2n2qn
2
cos(2πnz) =:

∑
1<n<B

ξn .
(A.2)

The recurrence relations for wn and ξn can be derived quite easily by making use of Chebyshev’s
polynomials. This yields

wn+1 = (n+ 1)

[
2 cos(2πz)

n
q2n+1wn − q4n

n− 1
wn−1

]
, (A.3)

and

ξn+1 = (n+ 1)2
[
2 cos(2πz)

n2
q2n+1ξn − 1

(n− 1)2
q4nξn−1

]
. (A.4)

It remains to derive the ranges of validity for which the partial sums for UB and VB give an
accurate approximation for the gradients of the RT function:

Proposition 1 Suppose that ℑ(τ) ≥ 0.742 and 0 ≤ ℑ(z) ≤ ℑ(τ)/2.
Then, for B ≥ 1, | d

dzθ(z, τ)− UB(z, τ)| ≤ 3|q|(B−1)2, where

UB(z, τ) =
∑

0<n<B

−4πnqn
2
sin(2πnz) . (A.5)

Proof. In order to demonstrate the proposition we bound the remainder of the series:
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∑
n≥0

n|q|n = 8π
|q|(B−1)2+1

(1− |q|)2 .

(A.6)



Numerically it can be shown that for ℑ(τ) ≥ 0.742, we have 8π|q|
(1−|q|)2 ≤ 3, which proves the

proposition.

Proposition 2 Suppose that ℑ(τ) ≥ 0.882 and 0 ≤ ℑ(z) ≤ ℑ(τ)/2.
Then, for B ≥ 1, | d2

dz2
θ(z, τ)− VB(z, τ)| ≤ 3|q|(B−1)2, where

VB(z, τ) =
∑

0<n<B

−8π2n2qn
2
cos(2πnz) . (A.7)

Proof. We bound the remainder of the series as follow:

| d
2

dz2
θ(z, τ)− VB(z, τ)| ≤ 8π2

∑
n≥B

|q|n2 n2

2
|e2πinz|+ |e−2πinz| ≤ 8π2

∑
n≥B

n2|q|n2−n

≤ 8π2
∑
n≥B

n2|q|(n−1)2 ≤ 32π2|q|(B−1)2
∑
n≥0

n2|q|n =
64π2|q|(B−1)2+2

(1− |q|)3 .

(A.8)

Numerically it can be shown that for ℑ(τ) ≥ 0.882, we have 8π|q|2
(1−|q|)3 ≤ 3, which proves the

proposition.
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