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Abstract. In the last decade, developments of matrix element and phase space generators have
focused on providing good efficiency and maximal flexibility and automation for a wide range
of physical processes. However, as recent studies have shown, they are a major bottleneck in
the established Monte Carlo event generator toolchains. With the advent of the HL-LHC and
ever rising precision requirements, future developments will need to focus on computational
performance, especially at intermediate to large jet multiplicities. We present the novel
BlockGen family of fast matrix element algorithms that are amenable for GPU acceleration,
making use of modern, minimal color decompositions. Moreover, we discuss the performance
achieved for standard candle processes such as V +jets and tt̄+jets production.

1. Introduction
The physics program at high energy particle colliders crucially depends on the precise simulation
of scattering events at particle level. These simulations are carried out by event generators,
computer codes that link theory to experiment by the Monte Carlo method. Event generators are
usually combinations of different modules, each encapsulating the physics at a given energy scale.
The highest energy scale is given by the hard scattering process and the physics can be described
by perturbation theory. The computations are fully automated at tree-level [1, 2, 3, 4, 5] and
next-to-leading order [6, 7, 8, 9, 10, 11] in the strong coupling constant αs. The number of
particles participating in the scattering process is arbitrary in principle, but limited in practice
due to the inherently exponential scaling of the computing algorithms.

Among the computationally most demanding Monte Carlo samples are those of background
processes like V+Jets or top-antitop-pair production in association with a large number of
associated jets. These processes contribute to the background of many current experimentally
interesting processes while still having large cross-sections and thus they require excellent
statistics [12]. For standard setups the computational bottleneck of the Monte-Carlo generation
have been found to be the computation of tree-level matrix elements and the generation of
phase-space points and their corresponding weights [13, 14]. Delivering good computational
performance for these physical processes is one of the main goals of this work.



Due to the inherent parallel nature of event generation, one can make use of modern
computational architectures like GPUs that are specialized for such applications. GPUs also
become increasingly available in the HPC landscape. Among other things, direct applications of
GPU accelerated computations in the Monte Carlo toolchain has been investigated for tree-level
matrix elements [15, 16], loop-amplitudes [17, 18] and parton density functions [19]. However,
a fully functional GPU accelerated Monte Carlo event generator is not yet available.

In these proceedings, we report on our efforts to deliver some of the missing pieces, namely
the matrix element computation for more general amplitudes and the phase space generation.

2. Amplitude computations
Based on earlier studies [20, 21, 22], we chose Berends-Giele recursion [23] for the amplitude
computations. The recursive nature yields a favorable scaling and in particular allows the
computation of many-jet amplitudes. The amplitudes are accompanied by their respective QCD
color factors, that can either be factorized via color-decompositions or embedded directly in the
recursion using a technique called color-dressing [21, 24].

In a previous study [25] we explored different color decomposition and dressing methods in
the simplified context of pure-gluon amplitudes. For GPU acceleration, we concluded that the
most promising approach is to sum colors using a color-decomposition with a minimal basis. In
the pure gluon case this basis can be obtained in the adjoint representation and has been know
for some time [26, 27, 28]:

Aλ1...λna1...an (p1, . . . , pn) =
∑

~σ∈Sn−2

(F aσ2 . . . F aσn−1 )a1an Aλ1...λn(p1, pσ2 , . . . , pσn−1 , pn) , (1)

where F abc = ifabc. The functions A are called color-ordered or partial amplitudes and are
stripped of any color information, which is now contained purely in the color coefficients. In the
following, we abbreviate A(p1, . . . , pn) := A(1, . . . , n). If the partial amplitudes carry a helicity
label they are often simply referred to as helicity amplitudes. The multi-index ~σ runs over all
permutations Sn−2 of the (n−2) gluon indices 2, . . . , n−1. This basis has (n−2)! elements and
scales factorially with the number of gluons. The factorial scaling favors other algorithms for
very large multiplicities but is still manageable for up to roughly six to eight outgoing particles.

For QCD amplitudes involving not only gluons but also quarks, the corresponding minimal
basis has recently been developed, and it is shown that the elements of the basis can be described
by Dyck words [29, 30]. A Dyck word is a set of brackets, e.g. ( and ), such that the number
of opening brackets equals the number of closing brackets, and the number of opening brackets
is always larger or equal the number of closing ones for any subset starting at the beginning of
the Dyck word. For example for four characters and one type of brackets ( and ), there are two
Dyck words:

(()), ()() , (2)
and for six characters there are five:

((())), (()()), (())(), ()(()), ()()() . (3)

Dyck words can also consist of different types of brackets, say ( ) and [ ]. In this case, there
should never be an odd number of one type of brackets embraced by another bracket. In the
four character example above, there are four Dyck words:

([]), [()], ()[], []() , (4)

and for example [)(] is not a valid word. For the amplitude computation, every opening bracket
represents a quark and every closing one an anti-quark. Different bracket types are understood
as differently flavored quarks.



Similar to the gluon case in Eq. (1), the kinematic basis allows to keep two indices fixed and
permute the others, this time using Dyck words. For purely fermionic amplitudes the basis can
thus be written as:

{A(1, 2, σ) |σ ∈ Dyck} . (5)
For amplitudes involving gluons, we allow all possible gluon insertions and permutations in the
Dyck word, but not within or in front of the initial, fixed fermion line. Finally, for multiple
fermion lines with the same flavor, we allow all possible permutations of same-flavor quarks. In
the following, we call this generated basis the Melia basis.

In the Melia basis, for n particles and k distinct quark-pairs, the number of amplitudes
is [29, 30]:

κ(n, k)Melia = (n− 2)!
k!

, (6)

which is a generalization of the all-gluon (k = 0) and the single-quark-pair (k = 1) basis.
For the color decomposition of the squared amplitude, we still need the corresponding color

factors. They can be obtained in a closed form following the procedure given in Ref. [31] and
proven in Ref. [32].

3. Phase space generation
As noted in [33], for the processes of interest here, we can achieve good performance with a
relatively simple phase space generator as realized in Mcfm [34, 35]. The core idea is based on
the fact that the n-particle phase-space element:

dφn(a, b; 1, ..., n) =

[
n∑
i=1

d~pi
(2π)32Ei

]
(2π)4δ

(
pa + pb −

n∑
i=1

pi

)
, (7)

for incoming particles a, b and outgoing particles 1, . . . , n, can be decomposed into a product of
lower-dimensional phase space elements via [36, 37]

dφn(a, b; 1, ..., n) = dn−m+1(a, b, π,m+ 1, ..., n)dsπ
2π

dφm(π; 1, ...,m) , (8)

with π being an intermediate particle with s2π = p2π. Repeating this decomposition, the phase-
space element can be understood as a single t-channel with a number of s-channels. This allows
to map the structure of the matrix elements to different channels making use of the multi-channel
technique. In this first implementation, we omit the s-channels and only study the performance
of a single t-channel integrator. For the performance of the full integrator see [38].

4. Computational Performance
4.1. Matrix Element
In Fig. 1 we show the time required per matrix element computation for different algorithmic
choices. We compare the currently used matrix-element generator Comix for color summed and
helicity summed configurations against our new matrix elements computed on a CPU and on
a GPU. The current default setup of Comix is color-sampled and helicity-summed, which is
therefore the baseline for our ratio plot. We find that our new matrix element is faster for small
multiplicities even on the CPU. Comparing the scaling with Comix, we find that our new matrix
element scales worse and we reach similar computational performance for five additional jets.
This is to be expected, since the color-dressed approach of Comix scales exponentially while
the color sum implemented in BlockGen scales factorially. The GPU version scales similar to
the CPU version but is roughly two orders of magnitude faster in the whole multiplicity range.
Taking into account that the CPU version would usually be parallelized and run on multiple
CPU core, this leaves a practical performance gain of roughly an order of magnitude.
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Figure 1. Comparison of different single-threaded CPU-based algorithms for Z[e+e−]+jets
production. The CPU numbers are generated on an Intel® i3-8300 (3.70GHz), and the GPU
numbers are generated on a NVIDIA® Tesla V100S.

4.2. Phase space
Table 1 shows a comparison of the number of points and computing time required to reach
a predefined accuracy for the new phase space (“New PS”) and the current Sherpa default
(“Default PS”, which is the recursive phase space as described in [1]). We test the production
of leptonically decaying W+, on-shell H production and pure QCD processes like tt̄ and pure
jet production. These processes are required for a large number of background analysis at the
LHC. Furthermore, the mixture allows to probe the phase-space generator in most of the relevant
scenarios. We observe that the new generator requires fewer points for most of the processes and
in particular significantly reduces the computing time. The exception is the clearly s-channel
dominated tt̄-production where the new generator only yields small improvements. We expect
this to improve with the addition of s-channel phase-space elements.

5. Outlook
We have presented preliminary results for our current effort to develop a novel matrix element
generator using the minimal number of amplitudes while color-summing. We tested the
computing performance for the production of Z-boson accompanied by a number of jets and
found significant performance gains. Furthermore we have shown new tests for a relatively
simple phase space generator that yields good results for the processes we are interested in. The
simple structure is promising for portability and the possible performance on accelerators.

In the future, we plan to combine the different components to a fully functional GPU-
accelerated Monte Carlo generator suitable to generate unweighted events. We plan to interface



Table 1. Runtimes and required number of points for given accuracy. All run on a Xeon®

E5-2650v2, timings taken for the matrix element and the phase space, # points before cuts.
The center-of-mass energy is

√
s = 14TeV and jets are defined using the anti-kT algorithm with

pT,j = 30GeV. The scales are chosen to be µR/F = H ′T /2. The Higgs-bosons are generated on
shell.

Process / Default PS New PS
MC accu Time # pts Time # pts

W+1j / 1‰ 4m 52s 10.3M 2m 32s 3.10M
W+2j / 3‰ 17m 12s 5.52M 13m 52s 2.53M
W+3j / 1% 46m 24s 7.48M 20m 16s 1.15M

H+1j / 1‰ 2m 20s 1.83M 1m 36s 1.50M
H+2j / 3‰ 4m 36s 2.32M 4m 4s 0.71M
H+3j / 1% 18m 12s 2.32M 12m 56s 0.63M

Process / Default PS New PS
MC accu Time # pts Time # pts

tt̄+0j / 1‰ 4m 38s 3.15M 4m 0s 3.59M
tt̄+1j / 3‰ 3m 12s 1.38M 3m 4s 1.47M
tt̄+2j / 1% 11m 58s 1.47M 11m 20s 0.89M

2j / 1‰ 12m 48s 2.98M 7m 44s 1.80M
3j / 3‰ 22m 48s 6.80M 23m 12s 2.39M
4j / 1% 1h 25m 6.95M 50m 24s 0.91M

these events to Sherpa via the existing HDF5 interface [14] for the remaining processing steps
such as parton showering and hadronisation.
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