
Developments in Performance and Portability of

BlockGen

E Bothmann3, JT Childers1, W Giele2, S Höche2, J Isaacson2, M
Knobbe3, R Wang1

1Argonne National Laboratory, Lemont, IL, 60439, USA
2Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
3Institut für Theoretische Physik, Georg-August-Universität Göttingen, 37077 Göttingen,
Germany

Abstract. For more than a decade Monte Carlo event generators with the current matrix
element algorithms have been used for generating hard scattering events on CPU platforms,
with excellent flexibility and good efficiency. While the HL-LHC is approaching and precision
requirements are becoming more demanding, many studies have been made to solve the
bottleneck in the current Monte Carlo event generator tool chains. The novel BlockGen family
of fast matrix element algorithms shown in this report, is one of the new developments that are
more suitable for GPU acceleration. We report the development experience of porting BlockGen
using Kokkos. Moreover, we discuss the performance of the Kokkos version in comparison with
the dedicated GPU version in CUDA.

1. Introduction
Monte Carlo (MC) event generators are the first step in the simulation chain of LHC experiments,
typically followed by detector response simulation and reconstruction of the simulated physics
objects. The HL-LHC will facilitate measurements at an unprecedented precision by producing
an order of magnitude more collision events, requiring even larger MC event samples. This is
expected to put pressure on computing resources [1, 2]. In addition, the computing architecture
landscape has become more heterogeneous with resources including more dependence on
accelerators for computational power and some including custom hardware designed specifically
for AI training.

The computing and theory communities are working toward addressing these challenges by
developing event generators that run on supercomputers and utilize accelerators effectively [3, 4].
The BlockGen algorithm calculates tree-level amplitudes and was presented in [5] with results for
a C/C++ and a CUDA implementation. This proceedings presents experience and performance
metrics for a Kokkos [6] implementation of the same algorithm.

1.1. Portability Frameworks
The physics computing community has begun investigating portability frameworks as a method
of addressing the increasing diversity in hardware being deployed [7, 8, 9, 10]. Frameworks,
like Kokkos, Sycl, and Alpaka, provide tools for writing algorithms once that can be compiled
to target different architectures. For example, the same algorithm written in Kokkos can be
compiled to run on Intel CPUs and GPUs, CUDA GPUs, and AMD CPUs and GPUs.



The primary kernel of BlockGen calculates the amplitude for an independent, randomly
generated set of particle momenta for a given physics process, which makes it a clean target
for parallelization. With this in mind, one can use the parallel_for methods from Kokkos to
wrap the targeted kernel and run it in parallel with each kernel operating on different particle
momenta. In the serial C++ version of BlockGen there are two types of data objects, static
and dynamic. Static objects are filled at run start and do not change from one phase-space
configuration to the next, whereas the dynamic data can change. In the Kokkos implementation,
a copy of the dynamic data is needed for each parallel execution while the static data can be
shared as read-only by all threads. Kokkos provides a class object, named View, that manage
data objects so that the user can perform data copies to/from devices such as NVidia GPUs.

2. Measuring Computing Performance
The measure of computing performance for Blockgen is throughput, that is events per second.
Users typically need a fixed number of events for a given physical process, making this a weak
scaling problem, i.e. the more events one can process in parallel the quicker the task is completed.

0 1 2 3 4
njet

10 8

10 7

10 6

10 5

10 4

10 3

Ti
m

e 
/ E

ve
nt

 [s
]

CPU: Skylake with MPI
CUDA: V100
Kokkos GPU: A100

Matrix Element Timing of ttbar+jets
CPU
CUDA
Kokkos

0 1 2 3 4
njet

10 1

100

Ra
tio

CPU: Skylake with MPI
CUDA: V100
Kokkos GPU: A100 Kokkos / CUDA

CUDA / CPU

Figure 1. Native C++ running on Skylake
using MPI to fill CPU, compared with native
CUDA version running on V100 and Kokkos
version running on NVidia A100. Time to
calculate one event is shown above, with
comparison ratios shown below.

The original C++ and CUDA implementa-
tions will be compared with the Kokkos imple-
mentation to show differences between native
implementations and portability frameworks.
To do this, we utilized CPU and GPU nodes
at the Argonne Joint Laboratory, Perlmutter
at National Energy Research Scientific Com-
puting Center (NERSC), and the LXPLUS
(Linux Public Login User Service) batch sys-
tem at CERN for System Evaluation. The
evaluation has been made with the following
hardware:

• two Intel Skylake (8180) CPUs each with
28 cores (56 cores total),

• AMD EPIC 7713 CPU with 64 cores,

• NVidia A100 GPU with 6,912 CUDA
cores and 432 Tensor cores,

• NVidia V100 GPU with 5,120 CUDA
cores and 640 Tensor cores, and

• AMD MI100 with 120 compute units
totaling 7,680 stream processors.

We use the Intel Skylakes to compare the Kokkos version compiled with OpenMP to the serial
C++ version, and the NVidia devices are used to compare Kokkos (compiled with CUDA) with
the native CUDA version. While the Kokkos version compiled with OpenMP can utilize all
CPU cores in a parallel manor, the serial C++ version will only utilize one CPU core. In order
to make a fair comparison of throughput in the plots to follow, the throughput values for the
serial C++ version were measured by running it with MPI to launch parallel processes on the
CPU. The combined throughput across the parallel MPI processes is used as the throughput.

3. Results
Measurements are shown for the tt̄+jets and W+jets processes as representative benchmarks.
Both of them are the major backgrounds of the Higgs productions in the p-p collision. In general,



24 25 26 27 28 29 21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

Total threads launched

102

103

104

105

106

107

Ev
en

t t
hr

ou
gh

pu
t

Pe
r S

ec
on

ds
 [s

1 ]

du W(ev)+gggg    V100    Kokkos
8 threads
16 threads
32 threads
64 threads
128 threads
256 threads

24 25 26 27 28 29 21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

Total threads launched

102

103

104

105

106

107

Ev
en

t t
hr

ou
gh

pu
t

Pe
r S

ec
on

ds
 [s

1 ]

gg tt+gggg    A100    Kokkos
8 threads
16 threads
32 threads
64 threads
128 threads
256 threads

24 25 26 27 28 29 21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

Total threads launched

102

103

104

105

106

107

Ev
en

t t
hr

ou
gh

pu
t

Pe
r S

ec
on

ds
 [s

1 ]

du W(ev)+gggg    MI100    Kokkos
64 threads
128 threads
256 threads

24 25 26 27 28 29 21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

Total threads launched

102

103

104

105

106

107

Ev
en

t t
hr

ou
gh

pu
t

Pe
r S

ec
on

ds
 [s

1 ]

du W(ev)+gggg    Skylake    Kokkos
8 threads
16 threads
32 threads
64 threads
128 threads

Figure 2. Event throughput as a function of the total number of parallel threads grouped by
the number of “threads per block” in CUDA terminology. Results are shown for W+jets and
tt̄+jets.

tt̄ is more compute intensive than W production, and more outgoing particles is more compute
intensive than fewer.

Figure 1 shows measurements of tt̄ production with a varying number of jets using the native
C++ and CUDA version with the Kokkos version compiled for CUDA. The time to calculate
a single event is shown as well as the ratios for comparison. As the number of jets increases,
the compute time increases due to increasing complexity. It is important to note that the
Kokkos+CUDA and the native CUDA implementations show nearly identical performance.

Figure 2 shows the event throughput versus total number of parallel threads on different
devices. It demonstrates the usefulness of a portability framework to enable running on many
modern architectures. The performance on GPUs plateaus as the number of threads increases
showing the GPU is saturated. These plots survey the possible run configurations and are used
to find settings with the peak throughput for a given process. The results for this peak value
are shown in Fig. 3. The measurements are grouped by hardware on the x-axis with throughput
on the vertical axis. The serial C++ version running on an Intel Skylake CPU is also included
for comparison which was run in a trivially parallel way using MPI to spawn one process per
CPU core. The total throughput summed across these parallel processes can be compared to
the Kokkos version which uses OpenMP to launch many parallel threads. For compute intensive
cases the Kokkos version outperforms the serial C++ version with MPI.

4. Summary
The Kokkos kernel performs comparably to the native CUDA and serial-C++ version on NVidia
and Intel devices for more intensive computations, e.g. for more than 2 additional jets in the



AMD EPYC 7713 64-Core (kokkos)

AMD MI100 VEGO 908 (kokkos)

Intel Skylake 8180M CPU @ 2.50GHz (kokkos)

Intel Skylake 8180M CPU @ 2.50GHz (serial-c++)

NVIDIA A100-PCIE-40GB (kokkos)

Tesla V100-PCIE-32GB (kokkos)
101

102

103

104

105

106

107

108

109

Ev
en

t t
hr

ou
gh

pu
t

Pe
r S

ec
on

ds
 [s

1 ]

du W+2jets
du W+4jets
du W+6jets

gg tt+2jets
gg tt+4jets

Figure 3. Hardware Comparison of Kokkos performance with CUDA backend on Nvidia GPUs,
OpenMP backend on AMD and Intel CPUs and ROCM/HIP backend on AMD GPUs. Bench-
marking processes tt̄+jets and W+jets are used.

tt̄ case. In addition, writing the kernel with Kokkos enabled utilization of AMD/Intel CPUs
with OpenMP and AMD GPUs with ROCM/HIP with no change to the source code. These
measurements were made using only the amplitude calculation with a simple integrator and no
event output. Next steps include implementing a proper VEGAS integration framework with
events written to disk and studying algorithmic performance on the different architectures. The
goal being to produce a leading-order event generator that can run on most modern systems
with good performance.

5. Acknowledgments
This work was supported by the DOE HEP Center for Computational Excellence at Lawrence
Berkeley National Laboratory under B&R KA2401045. This work was also done as part of
the offline software research and development programme of the ATLAS Collaboration, and
we thank the collaboration for its support and cooperation. We gratefully acknowledge the
computing resources provided and operated by the Joint Laboratory for System Evaluation
(JLSE) at Argonne National Laboratory. This research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357, and resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.
E.B. and M.K. acknowledge support from BMBF (contract 05H21MGCAB). Their research
is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
456104544; 510810461.

6. References
[1] ATLAS Collaboration 2022 ATLAS Software and Computing HL-LHC Roadmap Tech. rep. CERN Geneva

URL https://cds.cern.ch/record/2802918

[2] CMS Offline Software and Computing 2022 CMS Phase-2 Computing Model: Update Document Tech. rep.
CERN Geneva URL https://cds.cern.ch/record/2815292

[3] The HSF Physics Event Generator WG, Valassi A, Yazgan E et al. 2021 Computing Software for Big Science
5 URL doi.org/10.1007/s41781-021-00055-1



[4] Benjamin D, Childers J, Hoeche S, LeCompte T and Uram T 2017 Journal of Physics: Conference Series
898 072044 URL https://dx.doi.org/10.1088/1742-6596/898/7/072044

[5] Bothmann E, Giele W, Hoeche S, Isaacson J and Knobbe M 2021 Many-gluon tree amplitudes on modern
gpus: A case study for novel event generators URL https://arxiv.org/abs/2106.06507

[6] Trott C R, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V, Ellingwood N, Gayatri R, Harvey E, Hollman D S,
Ibanez D, Liber N, Madsen J, Miles J, Poliakoff D, Powell A, Rajamanickam S, Simberg M, Sunderland
D, Turcksin B and Wilke J 2022 IEEE Transactions on Parallel and Distributed Systems 33 805–817

[7] Kortelainen, Matti J, Kwok, Martin, (on behalf of the CMS Collaboration), Childers, Tay-
lor, Strelchenko, Alexei and Wang, Yunsong 2021 EPJ Web Conf. 251 03034 URL
https://doi.org/10.1051/epjconf/202125103034

[8] Kortelainen, Matti J, Kwok, Martin and on behalf of the CMS Collaboration 2021 EPJ Web Conf. 251
03035 URL https://doi.org/10.1051/epjconf/202125103035

[9] Yu, Haiwang, Dong, Zhihua, Knoepfel, Kyle, Lin, Meifeng, Viren, Brett and Yu, Kwangmin 2021 EPJ Web
Conf. 251 03032 URL https://doi.org/10.1051/epjconf/202125103032

[10] Pascuzzi V R and Goli M 2021 CoRR abs/2109.01329 (Preprint 2109.01329) URL
https://arxiv.org/abs/2109.01329


