
Lips: p-adic and singular phase space

Giuseppe De Laurentis
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

E-mail: giuseppe.de-laurentis@psi.ch

Abstract. I present new features of the open-source Python package lips, which leverages
the newly developed pyadic and syngular libraries. These developments enable the generation
and manipulation of massless phase-space configurations beyond real kinematics, defined in
terms of four-momenta or Weyl spinors, not only over complex numbers (C), but now also over
finite fields (Fp) and p-adic numbers (Qp). The package also offers tools to evaluate arbitrary
spinor-helicity expressions in any of these fields. Furthermore, using the algebraic-geometry
submodule, which utilizes Singular [1] through the Python interface syngular, one can define
and manipulate ideals in spinor variables, enabling the identification of irreducible surfaces
where scattering amplitudes have well-defined zeros and poles. As an example application, I
demonstrate how to infer valid partial-fraction decompositions from numerical evaluations.

1. Introduction
High-multiplicity loop-level amplitude computations involve significant algebraic complexity,
which is usually side-stepped via numerical routines. Yet, when available, compact analytical
expressions can display improved numerical stability and reduced evaluation times. Moreover,
much of the recent progress in the computation of loop-corrections to scattering amplitudes has
been achieved thanks to finite-field methods [2,3]. As these numerical computations are unsuited
for direct phenomenological applications, analytic expressions must be recovered, so that they
can then be evaluated with floating-point numbers.

An important role to manifest the analytic properties of scattering amplitudes is played
by the spinor-helicity formalism. A classical example is that numerators in gauge-theoretic
amplitudes, such as quantum chromodynamics, mitigate the degree of divergences which would
naively be expected from Feynman propagators, namely from factors of 1/sij to 1/

√
sij . Relaxing

the constraint of real kinematics, one realizes that these divergences are in fact either purely
holomorphic spinor contractions 〈ij〉 or purely anti-holomorphic ones [ij] (with sij = 〈ij〉[ji]).

It has been shown that significant insights into the analytic structure of amplitudes can be
obtained from tailored numerical evaluations in singular limits [4, 5]. For example, the rational
prefactors appearing in the planar two-loop amplitude for the process 0→ q+q̄−γ+γ+γ+ with a
closed fermion loop [6, 7] can be simplified to just the following two functions

〈23〉[23]〈24〉[34]

〈15〉〈34〉〈45〉〈4|1 + 5|4]
+ (45→ 54), (1)

〈13〉[13]〈24〉[45]

〈13〉〈34〉〈45〉〈4|1 + 3|4]
+ (45→ 54)− 〈12〉[13]〈23〉2

〈13〉〈24〉〈25〉〈34〉〈35〉
, (2)

together with those obtained by closing the vector space generated by these two functions under
the permutations of the photons (legs 3, 4, and 5). In a soon-to-appear paper, we obtain
analogous expressions for the full-color two-loop 0→ qq̄γγγ amplitude [8].

2. Lips: a phase-space generator for theory computations
Phase-space generators in high-energy physics traditionally describe the kinematics of physical
processes at colliders, meaning they provide real-valued phase-space configurations. Yet, from a
theoretical standpoint, the analytic properties of scattering amplitudes in perturbative quantum
field theory are better understood in the complex plane. This motivates the development of a
phase-space generator that exploits the additional freedom of complex kinematics.

The package lips (short for Lorentz invariant phase space) provides a phase-space generator
and manipulator that is tailored to the needs of modern theoretical calculations. The package
is designed to work for processes of arbitrary multiplicity, although at present it can easily
handle massless particles only. Nevertheless, massive particles can already be described in terms
of a pair of massless decay products. Use cases include: 1) generation of phase-space points
over complex numbers (C), finite fields (Fp), and p-adic numbers (Qp); 2) on-the-fly evaluation
of arbitrary spinor-helicity expressions; 3) construction of special kinematic configurations; 4)
algebro-geometric analysis of irreducible varieties in kinematic space.

Live examples powered by binder [9] are accessible through the badge on the GitHub page.1

2.1. Installation
The required language is Python 3, with version ≥ 3.8 being recommended. The package is
available through the Python Package Index,2 and thus can be installed via pip.

pip install --upgrade lips

Alternatively, the source code can be cloned from GitHub, and then installed with pip.

pip install -e path/to/repository

The option -e ensures that changes to the source code are reflected without having to reinstall
the package, for instance after invoking git pull to download an update.

2.2. Dependencies
The Python ecosystem provides a rich variety of third-party, open-source libraries for scientific
computing. Among these lips depends on NumPy [10], whose ndarray class is used to describe all
Lorentz tensors, mpmath [11], from which multi-precision real and complex numbers are imported,
and sympy [12], for symbolic manipulations. Dependencies are declared in the file setup.py and
are installed automatically through pip. The only exception is Singular [1], which is optional,
and needs to be installed separately. Additionally two new, open-source dependencies are used,
namely pyadic and syngular. They can be used independently of lips.

2.2.1. pyadic Finite fields have become a staple of multi-loop computations. More recently,
the idea to use p-adic numbers was introduced, in order to rescue a non-trivial absolute value
while maintaining integer arithmetic [5]. The package pyadic provides classes for finite fields
(ModP) and p-adic numbers (PAdic), instantiated as shown, as well as related algorithms.

ModP(number, prime)
PAdic(number, prime, digits, valuation=0)

Besides standard arithmetic operations, square roots are also available in the functions
finite_field_sqrt and padic_sqrt. These are not guaranteed to be in the field and may

1 At the URL github.com/GDeLaurentis/lips
2 At the URL pypi.org/project/lips/

https://github.com/GDeLaurentis/lips
https://pypi.org/project/lips/

"mpc" "gaussian rational" "finite field" "padic"

prime 7 7 3 3
digits 3 7 7 3

Table 1. Used (3) and discarded (7) arguments for Field.

return a FieldExtension object. Only field extensions by a single square root are currently
implemented. Moreover, the p-adic logarithm is also implemented in the function padic_log.

For p-adic numbers, numerical precision is explicitly tracked as an error O(pk) term, meaning
all displayed digits are, by default, significant digits. This allows one to perform computations
in singular configurations while keeping track of the numerical uncertainty. Nevertheless, the
parameter fixed_relative_precision can be switched to True to emulate the usual floating-
point behavior, with numerical noise being appended to numbers in case of precision loss.

Rational reconstruction algorithms from Fp and Qp to Q are also provided with the function
rationalise, which takes an optional keyword argument algorithm to toggle between maximal
quotient reconstruction (MQRR) and lattice reduction (LGRR) [13–15].

It is also worth mentioning that an alternative implementation of finite fields is available in
the package galois [16]. This is particularly useful when dealing with large ndarrays.

2.2.2. Singular/syngular The submodule algebraic_geometry of lips requires Singular [1].
To facilitate computations, an object-oriented Python interface is provided in the package
syngular [17]. Like pyadic, this can be used independently of lips. The main classes cur-
rently implemented are Ideal, Ring and QuotientRing. They provide easy access to several
functions implemented in Singular in a pythonic way. For instance, we have ideal addition (+),
product (*), quotient (/), membership (in), intersection (&), equality (==), etc. More methods
are available with self-explanatory names, e.g. primary_decomposition, which calls primdecGTZ.

2.3. Basic usage
The main class provided by lips is the Particles class. It describes the phase space of massless
particles with given multiplicity in 4 dimensions. By default, the 4-momenta are taken to be
complex valued. A specific choice of number field can be passed as a keyword parameter.

Particles(multiplicity, field=Field(name, prime, digits))

The generated phase-space point will satisfy on-shell relations (pµi pi,µ = 0 ∀ i) and momentum
conservation (

∑
i p
µ
i = 0). Valid choices for the field keyword are multi-precision complex

numbers (C), Gaussian rationals (Q[i]), finite fields (Fp), and p-adic numbers (Qp).

Field("mpc", 0, 300)
Field("gaussian rational", 0, 0)

Field("finite field", 2147483647, 1)
Field("padic", 2147483629, 3)

Finite fields and p-adic numbers are taken from a specific slice of complex phase space, namely
that with E, px, pz ∈ Q and py ∈ iQ. This is equivalent to a change of metric to diag(1,−1, 1,−1).
Depending on the choice of field, some parameters are discarded (see Table 1).

The Particles class is a 1-indexed subclass of the Python built-in type list, with Particle
class entries. While this re-indexing may be unusual in Python, it is the natural choice to match
the notation used to write scattering amplitudes. The Particle objects have several attributes,
each corresponding to one of the representations of the Lorentz group. For instance, we have right
spinors with index up (r_sp_u), left spinors with index down (l_sp_d), rank-two spinors (r2_sp),

Lorentz repr. symbol Particle property Lorentz repr. symbol. Particle property

(0, 1/2)
λα r_sp_u

(1/2, 1/2)

pµ four_mom
λα r_sp_d pµ four_mom_d

(1/2, 0)
λ̄α̇ l_sp_u pα̇α r2_sp
λ̄α̇ l_sp_d p̄αα̇ r2_sp_b

Table 2. Representations of the Lorentz group and associated properties of the Particle class.

four momenta (four_mom), etc. See Table 2 for a more schematic representation. Updating the
values for one of these properties automatically updates the values of the rest. The spinor con-
ventions employed are fairly common in the field, for more details please see ref. [18, Section 2.2].

Another basic functionality provided in lips is the evaluation of arbitrary spinor-helicity ex-
pressions. This works seamlessly for all of the above defined fields. Understood symbols include
arbitrary spinor strings, with limited support for open-index expressions, Mandelstam variables
with any numbers of indices, Gram determinants of three-mass triangle diagrams (∆_ij|kl|mn),3
and traces involving γ5 (tr5_ijkl). This feature can be accessed is via the __call__ magic
method of the Particle class, as shown.

Particles(5)("(8/3s23〈24〉[34])/(〈15〉〈34〉〈45〉〈4|1+5|4])")

Regular expressions (with the package re) are used to split the string into individual invariants,
which then form an abstract syntactic tree (with the package ast). The individual invariants are
computed in the Particles.compute method. For simplicity’s sake, greater-than and less-than
symbols can be used in lieu of the angle brackets to denote holomorphic spinor contractions.

Another useful method is the Particles.image method, which implements transformations
under the symmetries of phase space. These are represented by a tuple whose first entry is a
string representing a permutation of the external legs, followed by a Boolean denoting whether
a swap of the left and right representations of the Lorentz group is needed (λα ↔ λ̄α̇). For
instance, the symmetry of the expression in Eq. 1 would be denoted as (‘12354’, False).

3. Ideals in spinor space
Before constructing singular phase-space configurations, let us consider how to make these special
configurations unambiguous. To this aim, we rely on the algebro-geometric concept of an ideal.

In lips, two classes are used to represent ideals: LipsIdeal and SpinorIdeal. The former
represents covariant ideals in the ring of spinor components, while the latter represents invariant
ideals in the ring of spinor contractions [5]. Both ideal types are subclasses of the Ideal class of
the interface syngular, through which one can access many algorithms implemented in Singular.
Despite most applications of interest deal with Lorentz invariants, it is generally convenient to
work with spinor components, as the ideals are generated by fewer polynomials.

To instantiate a LipsIdeal object one has to declare the multiplicity of phase space, and a set
of generating polynomials. For instance, taking invariants which appear in Eq. (1), we can write

J = LipsIdeal(5, ("<4|1+5|4]", "<5|1+4|5]"))

Momentum conservation is added by default. The method make_analytical_d of the Particle
class is used to replace lower-index spinors with sympy symbols. Tensor contractions are then
computed as in numeric cases. The resulting expressions are then passed to Singular for

3 See Källén function or Heron’s formula.

subsequent manipulations. The default ring is a polynomial ring, while the quotient ring by the
momentum-conserving ideal can be accessed via the method to_mom_cons_qring. This modifies
the ideal in place. Translation to a SpinorIdeal, i.e. to the Lorentz invariant subring, can be
computed with the method invariant_slice. This relies on an elimination theory algorithm.

To understand the geometry of a variety associated to an ideal we need to compute its
primary decomposition. Prime ideals will then correspond to irreducible varieties, i.e. phase
space configuration where amplitudes have well-defined poles and zeros. To obtain the prime
ideals associated with a given ideal, such as the above defined J, one can (try to) compute a
primary decomposition via Singular. This approach is in general insufficient to map out the
irreducible varieties, due to the large number of variables in the underlying ring. However, we
can use physical understanding to gain insights into the primary decomposition. For instance,
the ideal J has five branches, but only one is non-trivial.

K = LipsIdeal(5, ("<14>", "<15>", "<45>", "[23]"))
L = LipsIdeal(5, ("<12>", "<13>", "<14>", "<15>", "<23>", "<24>", "<25>",

"<34>", "<35>", "<45>"))↪→
M = LipsIdeal(5, ("<4|1+5|4]", "<5|1+4|5]",

"|1]<14><15>+|4]<14><45>-|5]<45><15>",
"|1>[14][15]+|4>[14][45]-|5>[45][15]"))↪→

↪→

The ideals K and L are essentially triple-collinear configurations for legs 1, 4 and 5. Once these
are known, the ideal M can be easily obtained by computing ideal quotients. To check the
decomposition, we can compute an intersection of ideals with the operator &, which calls the
command intersect of Singular, and verify the equality, via reduced Gröbner bases.

assert J == K & K("12345", True) & L & L("12345", True) & M

Note the use of another magic method (__call__) to compute the image of an ideal under a
symmetry of phase space, similarly to the Particles.image method. By itself, this assertion is
not sufficient to prove a primary decomposition of the ideal J. One also has to prove that the
ideals K, L, M are prime. An efficient way to do this is via a prime test implement in syngular,
which can be accessed via the method test_primality. This assumes equi-dimensional ideals.

4. Singular varieties
In lips a singular variety, irrespective of its dimension, is represented by single, generic, phase-
space point—i.e. a zero-dimensional variety—embedded in the multi-dimensional variety. In this
context, generic means that the result of evaluations at the chosen phase-space point should have
an absolute value representative of evaluations at most points on the variety, possibly barring
special, higher-codimension embedded varieties. This is guaranteed with high probability by
picking the point at random, while satisfying the constraints that define the variety.

Two facilities are provided for the generation of finely-tuned phase-space points on specific
varieties. First, in the submodule hardcoded_limits two methods, _set and _set_pair, are
implemented. These methods efficiently generate points on varieties of codimension one and two
respectively. However, they do not know about primary decompositions. As such, in case a
variety is multi-branched, a branch will be chosen at random. Furthermore, since the constraints
are solved explicitly, only some configurations can be built this way. The second option is to use
the algebraic_geometry submodule, where the method _singular_variety is implemented.
This method is significantly more computationally intensive than the former, as it relies on
lexicographic Gröebner bases, but it allows to specify branches—i.e. irreducible sub-varieties.

For instance, the following code will generate a 3-digits 2147483647-adic phase-space point
near the irreducible variety associated to the prime ideal M.

oPsM = Particles(5, field=Field("padic", 2 ** 31 - 1, 3), seed=0)
oPsM._singular_variety(("〈4|1+5|4]", "〈5|1+4|5]"), (1, 1),

generators=M.generators)

The first argument specifies orthogonal directions to the variety, the second the valuations of the
invariants in the first argument (in this case both proportional to the chosen prime), while the
generators keyword argument specifies the branch. Asymmetric limits can also be constructed
by providing unequal valuations, see ref. [19, Appendix C].

5. Partial fraction decompositions
Partial fraction decompositions play an important role in the computation of scattering
amplitudes, both in terms of final expressions, as well as at intermediate stages, e.g. for
integration-by-parts identities. Standard methods are based on symbolic computations, including
Gröbner bases and polynomial reduction. For instance, see ref. [20]. We can use the technology
described in the previous sections to infer whether a given partial fraction decomposition is valid,
before determining the analytic form of the numerator. Given denominator factors D1 and D2,
1. compute the primary decomposition for the ideal

〈
D1,D2

〉
;

2. generate a phase-space point near each branch of the variety V (
〈
D1,D2

〉
);

3. numerically evaluate the function at these points.
If the numerator vanishes on all of them, then it belongs to (the radical of) the associated ideal
(Hilbert’s Nullstellensatz). For instance, given the expression of Eq. (1), we can infer that the
denominator factors 〈4|1 + 5|4] and 〈5|1 + 4|5] must be separable into different fractions because
the numerator, considered in least common denominator form, vanishes on all 5 branches. Further
constraints from the degree of vanishing can also be imposed via the Zariski–Nagata theorem [5].

Beyond partial fractions. Partial fraction decompositions deal purely with sets of denominator
factors, i.e. the poles of the functions. Yet, even if no partial fraction decomposition is possible,
for instance when the denominator is a single irreducible polynomial, the numerator may still have
a simple structure, generally in terms of an expanded set of invariants. These new invariants
can be systematically identified via primary decompositions, and the same logic described to
separate poles in the denominators can also be used to identify factors of the numerators.

References
[1] Decker W et al. Singular 4-2-1 – A computer algebra system for polynomial computations
[2] von Manteuffel A and Schabinger R M 2015 Phys. Lett. B 744 101–104 1406.4513
[3] Peraro T 2016 JHEP 12 030 1608.01902
[4] De Laurentis G and Maître D 2019 JHEP 07 123 1904.04067
[5] De Laurentis G and Page B 2022 JHEP 12 140 2203.04269
[6] Abreu S, Page B, Pascual E and Sotnikov V 2021 JHEP 01 078 2010.15834
[7] Chawdhry H A, Czakon M, Mitov A and Poncelet R 2021 JHEP 06 150 2012.13553
[8] Abreu S, De Laurentis G, Ita H, Klinkert M, Page B and Sotnikov V 23xx.xxxxx
[9] Jupyter et al. Binder 2.0 - reproducible, interactive, sharable environments for science at scale.

[10] Harris C R et al. 2020 Array programming with NumPy
[11] Johansson F et al. 2013 mpmath: a Python library for arbitrary-precision floating-point arithmetic
[12] Meurer A et al. 2017 Sympy: symbolic computing in python
[13] Lenstra H et al. 1982 Mathematische Annalen 261 515–534 URL http://eudml.org/doc/182903
[14] Monagan M 2004 pp 243–249
[15] Klappert J and Lange F 2020 Comput. Phys. Commun. 247 106951 1904.00009
[16] Hostetter M 2020 Galois: A performant NumPy extension for Galois fields github.com/mhostetter/galois
[17] De Laurentis G 2021 syngular github.com/GDeLaurentis/syngular
[18] De Laurentis G Numerical techniques for analytical high-multiplicity scattering amplitudes Ph.D. thesis
[19] Campbell J M, De Laurentis G and Ellis R K 2022 JHEP 07 096 2203.17170
[20] Heller M and von Manteuffel A 2022 Comput. Phys. Commun. 271 108174 2101.08283

https://arxiv.org/abs/1406.4513
https://arxiv.org/abs/1608.01902
https://arxiv.org/abs/1904.04067
https://arxiv.org/abs/2203.04269
https://arxiv.org/abs/2010.15834
https://arxiv.org/abs/2012.13553
https://arxiv.org/abs/23xx.xxxxx
http://eudml.org/doc/182903
https://arxiv.org/abs/1904.00009
https://github.com/mhostetter/galois
https://github.com/GDeLaurentis/syngular
https://arxiv.org/abs/2203.17170
https://arxiv.org/abs/2101.08283

