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Abstract. The scaling properties of the final state charged hadron and mean jet

multiplicity distributions, calculated by deep residual neural network architectures

with different complexities are presented. The parton-level input of the neural networks

are generated by the Hijing++ Monte Carlo event generator. Hadronization neural

networks, trained with
√
s = 7 TeV events are utilized to perform predictions for

various LHC energies from
√
s = 0.9 TeV to 13 TeV. KNO-scaling properties were

adopted by the networks at hadronic level.

1. Introduction

Modern developments in Machine Learning methods led us to use these techniques in the

field of high-energy physics (HEP) with great benefits [1–5]. Applications of the artificial

intelligence hopefully not only provide a solution for so far unsolved questions, but may

help to improve physical models by recognizing and investigating the inner correlations

from these new approaches. In our recent works, Deep Neural Networks (DNN) were

proposed to calculate the hadron-level statistical properties of collision events from the

parton-level input, which was pre-calculated and trained by the widely used Pythia 8

Monte Carlo (MC) event generator [6–10]. We showed that the application of relatively

simple neural network models preserve the strong KNO-scaling of the hadronic final-

state production yields and their multiplicity distributions at energies available at the

Large Hadron Collider (LHC). Another observation was that, despite the models were

trained exclusively at one fixed center-of-mass energy of
√
s = 7 TeV [10–13], the

acquired scaling properties result in the application of the same network in more general

kinematical ranges.

The Hijing++ (Heavy Ion Jet INteraction Generator, C++ version) is the new

generation of the popular Hijing Monte Carlo event generator for heavy-ion physics.

This program code is under final tests in the development timeline, and the latest,
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tuned version already performs well with data [14–16]. In the current study, the

previously proposed and Pythia 8-trained, ML-based hadronization models were used

to investigate KNO-like scaling. In order to more inclusively test the neural network

(NN) model, the parton-level input of the ML-based hadronization model was generated

by the Hijing++ in this study. Replacing the Lund hadronization model with a

DNN-based one can provide a cross-check and valuable input for the validation of the

hadronization model, as its schematic layout is presented in Fig. 1.

Figure 1. The schematic overview of the investigated processes and cross-checks.

2. The applied models

One of the focuses of our interest is to investigate, whether a neural network is able to

represent the properties of the hadronization, especially at the non-perturbative regime

of quantum chromodynamics. Within this kinematical regime the physical description

lacks first principle calculations, therefore only complex phenomenological models exist

with large sets of inner parameters. Since it has been proven that a complex deep neural

network can pick up the properties of the jet evolution [5], indeed presenting QCD-

like scaling properties [6, 10], a machine learning-based hadronization model is well

motivated. On the other hand, the universality of our hadronization network module is

the key idea for further development, therefore we investigated the ML-based model by

inserting it into another Monte Carlo generator framework for cross-check tests.

The DNN hadronization models were developed based on the popular ResNet

architecture, implemented in Python, using Keras v2.7 with Tensorflow v.2.7 backend [2,

3, 9]. Two models with different complexities were proposed, designated as ’Model S’

and ’Model L’, with 1.7 × 106 and 2 × 107 trainable parameters respectively. The

schematic layout of the models are shown on Figure 2.

The models have been trained on Pythia 8 events that contained at least 2 jets

(with pTJ
≥ 40 GeV/c and R = 0.4 in the |y| < 3 rapidity region) at

√
s = 7 TeV

c.m. energy [6, 10]. By applying these DNN-based hadronization models on Pythia 8

generated partonic initial states, we were able to reproduce the measured charged hadron

multiplicity distribution, jet-multiplicity distribution, and observables vs. event activity

classifiers within a wide range of LHC energies. These correlated well with the physical

expectations.
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Figure 2. The basic ResNet building block (left panel), and the schematic layout of

the applied Model S (middle panel) and Model L (right panel) variations.

TheHijing++model is the successor of the original Fortran Hijing, completely

rewritten in modern C++ programming language [15–17]. The core concepts of its

physics engine are the well-known wounded nucleon model with energy-dependent

minijet production [18], with the Lund string fragmentation model of Pythia 8, taking

care of the hadronization [7, 8, 19]. It has new, modern built-in features such as

modularity and CPU multithreading, whereas the underlying physics has been revamped

and tuned for the RHIC-LHC energy era.

In this current study, our concept follows the idea presented in Fig. 1: the partonic

initial state events, that are the inputs of the DNN-hadronization models, are now pre-

calculated with Hijing++ with the same event criteria that has been mentioned above.

The predicted observables are then presented and compared to the original Monte Carlo

generated events.

3. Results

The multiplicity distributions of charged hadrons stemming from proton-proton collision

events (with the same event selection criteria detailed above) are presented on the left

panel of Fig. 3, where the Hijing++-calculated values (orange markers) are compared

with the NN-predicted results (blue and green lines) for various c.m. energies in mid-

rapidity, |y| < 0.5. The Pythia 8-generated Monte Carlo results are also shown with

red markers for reference. Each curve has 300k generated events. The right panel of

Fig. 3 shows the corresponding Pn = 1
⟨n⟩Ψ

(
n
⟨n⟩

)
scaling functions, with the joint curves

presenting the effect of KNO-like scaling.

The primer observation on the multiplicity distribution is that, the Hijing++

results display deviation compared to Pythia 8 ones. A significant excess contribution

appears at higher multiplicity classes against the low-multiplicity region. This difference

is not surprising, since the phenomenological mechanisms of the two models are different
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Figure 3. Mid-rapidity multiplicity (left panel) and KNO-scaled distributions (right

panel) of charged hadrons in proton-proton collisions at LHC energies.

in the non-perturbative regime. Minijet production in Hijing++ generates more

hadrons in the mid-multiplicity range. The predictions from the NN-based Model L

and Model S lie between the two Monte Carlo models. Recalling that the NN-based

models were trained with the fixed 7 TeV c.m. energy on Pythia 8 data only, the

presented multiplicity distributions of these networks convoluted with Hijing++ is

closer to the original Pythia 8-calculated curves at all energies. Indeed, the trends are

more Pythia 8-like. This supports the idea, that hadronization plays a more significant

role in the multiplicity production, than the parton shower evolution—the latter differs

in the two Monte Carlo generators.

We investigated whether KNO-scaling of the multiplicities is preserved. One can

observe on the right panel of Fig. 3 that good agreement were found among all the

models up to the highest multiplicities after applying the KNO-transformation. It is

also true for all datasets, that the larger the multiplicity, the stronger the violation

of the KNO-scaling is, which has been shown experimentally as well [20]. This scaling

violation here was found to be more remarkable for the original Hijing++ data. Model

L and Model S scale well in parallel to these, apart from the lowest multiplicity values,

where the applied cuts and statistics limit the training process.

The mean jet multiplicity distributions (the number of constituent particles in a

jet) and their KNO-scaled curves are shown in the left and right panels of Figure 4,

respectively. The deviation between the distribution shapes of the original Monte Carlo

model results mostly vanishes. In this high-momentum fragmentation regime minor

impact from the soft non-perturbative sector is present, therefore difference between

the MC calculations appears only at the highest multiplicity values.

In contrary to the above agreement, the NN-based Model L and Model S present

irregular, double-bump structure in the mean jet multiplicity distributions. The

magnitude of this effect is independent of the hyperparameter-space volume but is

getting stronger for higher
√
s values. This suggests that though the global jet structure

(e.g. the mean jet multiplicity) is similar among the two MC models, the sub-structure

is quite different. This effect requires further investigations on a per-jet basis.
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Figure 4. Jet mean multiplicity (left panel) and KNO-scaled jet mean multiplicity

(right panel) in proton-proton collisions, for jets with pTJ
≥ 40 GeV/c and R = 0.4 in

the |y| < 3 region.

The KNO-scaled mean jet multiplicities on the right panel of Fig. 4 are similar to

the results that we have seen previously: the shapes of the curves are mostly universal

at all energies for each investigated model—again with good agreement between the

Monte Carlo models, apart from the highest multiplicity bins, which lack statistics. The

shapes of the scaled distributions are different for the NN-based Model L and Model S,

is separated into two branches by the size of the hyperparameter space volume.

4. Summary

In this contribution the scaling properties of charged hadron multiplicities and jets at

LHC energies, stemming from proton-proton collisions were presented. The multiplicity

distributions were determined by two Monte Carlo event generators and deep neural

network based hadronization models. The neural network results presented a KNO-

scaling of charged hadrons in jetty events at |y| < 0.5 rapidity, which differed from the

Monte Carlo predictions. On the other hand, the mean jet multiplicity distributions on

a wider rapidity region revealed diverse scaling behavior for the different models, with

a better agreement between the Hijing++ and Pythia 8 calculations.
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