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Abstract. The quantum annealing framework provides a general technique for the solution
of a wide variety of optimization problems. Recent technological developments have made it
possible to build quantum annealing devices with thousands of qubits, bringing them within
range to tackle real-world problems in the near future. In this paper, I review this framework,
and present a method for its use in the minimization of functions of continuous variables. Then,
I discuss how this method can be employed to solve optimization problems with applications
in high-energy physics, including training neural networks for classification, solving partial
differential equations, and fitting effective field theories to experimental data.

1. Introduction
The development of efficient algorithms for the optimization of complex multivariate target
functions is essential for theoretical and phenomenological studies in high-energy physics. Such
optimization problems arise when performing several different data-analysis tasks. These include
fitting the parameters of a theoretical model to experimental data, and training machine-learning
models for multiple purposes, e.g., event classification. Purely theoretical calculations may also
require the use of numerical optimization techniques. For example, the solution of a differential
equation or variational problem can be viewed as the minimum of some loss function [1, 2].

Classical optimization algorithms typically operate by incrementally improving a tentative
solution. This can lead to their convergence to local extrema of the target function, instead of
the desired global one. While there are several techniques that attempt to address this issue, it
remains a problem when local extrema are deep, in the sense that they are separated from the
global one by large barriers. Quantum annealing provides an alternative optimization method,
based on the dynamics of a quantum system [3, 4]. It may offer a better performance than its
classical counterparts, both in terms of the scaling of the time required to find the solution [5],
and in the success rate for obtaining the global extremum [6].

The existing implementations of quantum annealing in physical devices allow to find the
ground state of a generic Ising model with thousands of qubits. In order to minimize a more
complex function, one needs to find a qubit encoding of its arguments that will turn the function
into an Ising model Hamiltonian when expressed in terms of the qubits. In this work, I describe
several techniques to achieve this for some of the optimization problems arising in high-energy
physics [7, 8, 9].



2. Quantum Annealing
The quantum annealing method allows to obtain the ground state of a quantum Hamiltonian
H1. This is done by means of a physical system whose Hamiltonian is given by

H(s) = A(s)H0 +B(s)H1, (1)

where H0 is a simple Hamiltonian whose ground state is known, A(s) and B(s) are functions
such that A(0) = B(1) = 0 < A(1), B(0), and s is an adjustable parameter. The annealing
procedure starts by setting s = 0 and preparing the system in the ground state of H0. Then, s
is turned up from 0 to 1. If this is done sufficiently slowly, the adiabatic theorem ensures that
the system ends up in the ground state of H1 with a high probability.

A quantum annealing device performs this procedure on a fixed system with pre-defined H0,
A(s) and B(s), allowing the user to control the time evolution of s and the free parameters
of the target Hamiltonian H1. The typical system employed in such devices is a collection of
qubits (i.e., two-state quantum systems). In particular, the largest currently-available quantum
annealers implement the transverse-field Ising model, which is defined as

H0 =
∑
i

Xi, H1 =
∑
ij

JijZiZj +
∑
i

hiZi, (2)

where Xi and Zi are the corresponding Pauli matrices acting on the i-th qubit, and Jij and θi
are free parameters.

The eigenstates of the quantum Ising model Hamiltonian H1 are simultaneous eigenstates
of all the Zi. They are thus labeled by the eigenvalues σi = ±1 of the Zi. That is, collecting
the eigenvalues in a vector σ = (σ1, σ2, . . .), one has Zi |σ⟩ = σi |σ⟩. There is thus a direct
correspondence between the quantum Ising model and the discrete classical system consisting
of two-state spins σi = ±1 with Hamiltonian: Hclassical(σ) =

∑
ij Jijσiσj +

∑
i hiσi, which is

just the classical Ising model. Concretely, the eigenvalues of the quantum Hamiltonian H1 are
equal to the energies of this classical system: ⟨σ|H1 |σ⟩ = Hclassical(σ). One can thus view the
quantum annealing process for the transverse-field Ising model as a method for minimizing the
discrete classical functionHclassical(σ) through quantum dynamics. Alternatively, it is sometimes
useful to view it as the minimization of the function

Q(τ ) =
∑
ij

Qijτiτj , (3)

where τi = (σi + 1)/2 ∈ {0, 1}. The minimization problem for Q(τ ) is known as Quadratic
Unconstrained Binary Optimization (QUBO) [10, 11, 12].

In order to solve a general optimization problem in a quantum annealer, one needs to find
a way of encoding it as the minimization of a function of the form given in Eq. (2) or Eq. (3).
It has been shown that, for several such encodings, quantum annealing is more consistent than
its classical alternatives in finding the global minimum of some non-convex functions [6, 7]. In
Sec. 3, I will present a method for obtaining encodings for a wide range of optimization problems.

The practical limitations of quantum annealing come from the number of available qubits,
their connectivity, and the finite amount of time that can be used in an annealing run. The
state-of-the-art D-Wave Advantage system6.1 device contains 5616 qubits with a total of 40135
couplings between them. Each qubit is connected to 15 other qubits. This means that only some
of the elements of the Jij matrix can be non-vanishing. If the Jij matrix corresponding to the
problem at hand is denser than what is allowed by the physical device, several qubits are be
chained together by setting a strong Jij connection between them. The chain of strongly bound
qubits behaves as a single one with more available connections. In this way, highly-connected
Ising models can be embedded in a physical device, at the price of using more qubits.



The annealing time plays a role in the likelihood to get the ground state after the annealing
process. The adiabatic theorem is valid only in the limit in which the annealing time goes to
infinity. In practical applications with finite time, this is accounted for by running the annealing
process several times. The number of times this is done is called the number of reads. The final
candidate for the ground state is selected as the final state with the least energy among all those
that have been generated.

3. Encoding
One of the key elements for the implementation of an optimization problem in a quantum
annealer is its formulation as a QUBO (or, equivalently, the minimization of a classical Ising
model Hamiltonian). Here, I present a method that allows to do this for a large class of problems,
consisting of the minimization of a polynomial function L(c) of real variables c = (c1, . . . , cn)
inside a box

B = [a1, b1]× . . .× [an, bn], (4)

up to a given precision (bi − ai) ϵ for each ci. The function L to be minimized is referred to
as the loss function. It should be noted that, since polynomials can efficiently approximate a
wide variety of functions on a bounded domain, this method effectively allows to encode many
non-polynomial functions too.

The first step is to write L as a function of n × (p + 1) binary variables τiα = 0, 1, indexed
by i = 1, . . . , n and α = 0, . . . p, where p is such that 1/(2p − 1) < ϵ. The real variables ci can
be expressed as functions of the binary ones τiα, as

ci(τ) = ai +
bi − ai
1− 2−p

p∑
α=0

τiα
2p

, (5)

Substituting this expansion in the quadratic loss function turns it into a polynomial L(c(τ)) in
the QUBO variables τiα.

The second step is to turn this polynomial into a quadratic one, at the price of introducing
auxiliary binary variables τ̃ . This can be done by iteratively applying the following procedure:

(i) Select a monomial τ1τ2τ3 . . . in the loss function polynomial with degree higher than 2.

(ii) Replace the product τ1τ2 by a new binary variables τ̃ in this monomial. This decreases its
degree by one unit.

(iii) Add a term λC(τ1, τ2, τ̃) to the loss function, where λ is a large coefficient, and C is the
quadratic function:

C(x, y, z) = xy − 2z(x+ y) + 3z. (6)

The values of the original τ variables at the global minimum of the loss function are unchanged
by this procedure. This is because C(x, y, z) attains its minimal value if and only if xy = z.
Every time the procedure is applied, the degree of one monomial is decreased. The process stops
when the loss becomes quadratic.

Through the application of these two steps, binary encoding and quadratization, one can
always turn the minimization of a polynomial in continuous variables on a bounded domain
into a QUBO. In practice, the number of variables ci and the precision ϵ ≳ 1/(2p − 1) that
can be achieved are limited by the number of available qubits. The precision can be improved
through what is known as a zooming procedure [13]. Once the optimal c has been obtained, the
boundaries a = (a1, . . . , an) and b = (b1, . . . , bn) can be updated to center the n-dimensional
box B around c and reduce its size by a factor 0 < f < 1. Each zooming step is known as an
epoch, and f is the zooming factor. Denoting the boundaries of epoch N by aN and bN , and
the solution c resulting from that epoch by cN , the update rule is

aN+1 = (1− f)aN + f cN , bN+1 = (1− f)bN + f cN , (7)



The zooming procedure allows to obtain a greater precision with a relatively low number of
qubits, at the price of intrucing classical updating steps. Some of the advantage of the quantum
computation may be lost, if the first zooming steps, having low precision, generate wrong guesses
for the ci that are far away from the optimal values for a higher precision. This can be mitigated
by choosing a zooming factor close to one, e.g. f = 0.9, which allows successive epochs to correct
the potential wrong values produced by previous ones. In an ideal setting in which sufficient
qubits are available to reach the desired precision, this issue can be completely removed by
performing a single epoch, taking full advantage of the quantum dynamics of the annealer. This
may be realized in future annealing devices, for which the number of qubits and connections is
expected to grow quickly.

4. Applications
This section focuses on three specific applications of the general encoding method outlined in
Sec. 3, to three different problems: training neural networks, solving differential equations, and
fitting effective field theories to experimental data. I will show examples of such problems
in which the QUBO obtained with this procedure have been embedded solved in quantum
annealers. Generally, these are small proof-of-concept examples that allow to test the viability
of the proposed methodology, and suggest that it has the potential to solve real-world problems
when larger quantum annealing devices with more qubits and couplings are available.

4.1. Training neural networks
A neural network is a family of non-linear functions Yθ(x) that depend on a collection of
parameters θ = (θ1, θ2, . . .). In a wide range of applications, they are able to efficiently
approximate the functional relation described by a set of points (xa,ya), as:

ya ≃ Yθ(xa) (8)

by adjusting a relatively small number of free parameters θi. In their simplest version, known as
densely connected feed-forward networks, the Y functions are defined by successive application
of layers, with each layer consisting of an affine transformation Aijxj + Bi, followed by the
element-wise application of a non-linear function f , known as the activation function. For
example, the action of 2-layer network is given by

Yθ,i(x) =
∑
j

f

[
A

(2)
ij f

(∑
k

A
(1)
jk xk +B

(1)
j

)
+B

(2)
i

]
. (9)

In general, the elements of the A matrices and B vectors for all layers constitute the collection
θ of free parameters.

The process by which the parameters θ are adjusted is known as the training algorithm. This
is typically done by minimizing a loss function that quantifies the deviation from Eq. (8). A
common loss function in several applications is the mean squared error:

L(θ) =
∑
a

|Yθ(xa)− ya|2 . (10)

Training is usually the most computationally expensive task in machine learning, and the
loss functions that arise in this context are highly non-convex, leading to difficulties in their
minimization through classical algorithms. Using the method presented here, neural networks
can be trained on quantum annealers, which allows to take advantage of the tunneling that
happens in them to find the global minimum of the loss function more efficiently.
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Figure 1. Example datasets (dots) and decision boundaries (lines) from simple neural networks
trained on a quantum annealer. Points with label ya = −1 (+1) are shown in blue (green)

In order to formulate the training as a QUBO, a bounded domain must be chosen for the
parameters θ. Then, the activation function will only be applied to a bounded set of values,
arising from combinations of θ and xa, so they can be approximated arbitrarily well by a
(single-variable) polynomial. The same argument applies to the loss, viewed as a function of
Yθ(xa) and ya. In the case of Eq. (10), this is not necessary, as it is already quadratic. After
these approximations have been made, the loss function becomes a polynomial in θ. Then, the
procedure in Sec. 3 can be applied to convert it into QUBO form.

In Ref. [7], a simple version of the network defined in Eq. (9), without the final activation

function and the first layer’s biases B
(1)
j , and with one qubit per parameter, was trained using

the method presented here to fit three toy datasets in which the xa vectors are two-dimensional
and ya = ±1. The resulting decision boundaries, computed as the set of points x for which
Yθ(x) = 1/2 are shown in Fig. 1. The quantum training algorithm was compared to a classical
analog of the same network, with binarized weights. The quantum one was shown to be more
reliable in finding the global minimum of the loss function.

4.2. Solving differential equations
An arbitrary system of partial differential equations with any initial or boundary conditions can
be equivalently formulated as a QUBO (up to finite precision), as long as the equations and
conditions are polynomials in the functions fi(x) to be solved for and their derivatives. In order
to achieve this, the first step is to parametrize the solution as a linear combination

fi(x) =
∑
a

wiaΦa(x) (11)

of some set of basis functions Φa(x). The functions Φa(x) should be chosen taking into account
the type of problem under consideration, e.g., using a set of sines and cosines for oscillatory
problems.

The second step is to define a loss function L(w) such that its global minimum is achieved
at values of the wia that make fi(x) an approximate solution of the system. I denote both the
differential equations and the boundary conditions at a given point x as Ea(x)[f ] = 0, with the
understanding that boundary conditions identically vanish outside the region on which they are
applied. That is, Ea(x)[f ] = 0 if x is outside the domain of Ea. The loss function can then be
defined as

L =
∑
ak

(Ea(xk)[f ])
2 , (12)

where the xk denote the points of a lattice that fills the domain of the equations. L is a
non-negative quantity that vanishes when all equations are satisfied. It thus achieve its global



minimum at values of w that solve them. Plugging the expansion from Eq. (11) into Eg. (12),
gives the loss function as a polynomial in the parameters wia. The method in Sec. 3 can then
be applied, providing a QUBO representation for the problem.

In Ref. [9], this technique has been used to solve several simple examples of differential
equations (ordinary, partial and coupled) in a quantum annealing device. An accurate
approximation to the analytical solution is found reliably with it. While the quantum method
cannot currently compete with specialized classical solvers, due to limitations in the number of
qubits, these results suggest that it may become useful in practice when larger annealing devices
are avaiable.

4.3. Fitting effective field theories to experimental data
The task of finding the values of free parameters θ of a theory that describe the experimentally
measured data best can also be seen as an optimization problem. Assuming a Gaussian
likelihood, the function to be minimized is the negative log-likelihood

χ2 =
(
Oexp

a −Oth
a (θ)

)
C−1
ab

(
Oexp

b −Oth
b (θ)

)
, (13)

where the Oexp
a are the experimental values of the observables under consideration, the Oth

a (θ)
are the θ-dependent theoretical predictions for their values, and C−1

ij is the inverse covariance
matrix.

In an effective field theory, all quantities are expanded perturbatively in inverse powers of the
cutoff scale 1/Λ. The free parameters are the Wilson coefficients, which have an associated power
of 1/Λ. In practice, when working at a finite precision, the pertubative expansion can be cut at a
finite order. Then, the loss function χ2 becomes polynomial in the Wilson coefficients. Applying
the procedure described in Sec. 3, with bounds given by the range of values of coefficients in the
pertubative regime, one obtains a QUBO that approximates the minimization problem for χ2.

Several effective field theory fits were performed in Ref. [8] using this method to compute
them in quantum annealers. While the number of coefficients that can be fitted is limited by the
amount of qubits (to ∼8–10 coefficients on current devices), the number of observables that can
be included is arbitrary. This allowed to perform a quantum annealing fit for a set dimension-
6 Wilson coefficients to a set of Higgs observables, matching the results of previous classical
calculations [14]. A scenario in which an experimental anomaly generates a local minimum in
the χ2 function away from the global one was considered. The quantum method was shown to
be more consistent than its classical alternatives in finding the global minimum in that setup.
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