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Abstract. The generation of unit-weight events for complex scattering processes presents
a severe challenge to modern Monte Carlo event generators. Even when using sophisticated
phase-space sampling techniques adapted to the underlying transition matrix elements, the
efficiency for generating unit-weight events from weighted samples can become a limiting
factor in practical applications. Here we present the combination of a two-staged unweighting
procedure with a factorisation-aware matrix element emulator using neural networks which we
make accessible in the Sherpa event generation framework. The algorithm can significantly
accelerate the unweighting process, while it still guarantees unbiased sampling from the correct
target distribution. We apply, validate and benchmark the approach for partonic channels
contributing to the high-multiplicity LHC production processes Z + 4, 5 jets and tt̄ + 3, 4 jets,
where we find speed-up factors between 16 and 350.

1. Introduction
The high luminosities achieved by the LHC lead to a need for large numbers of simulated events
for physics analyses. These often address rather rare and complex scattering processes that need
to be described with sufficient theoretical accuracy. Modern Monte Carlo event generators like
Herwig [1, 2], Pythia [3, 4] and Sherpa [5, 6] are up to the task but the resource requirements
can become substantial. The upcoming HL-LHC will aggravate this situation, especially since
current projections indicate that the growth in computational budget will not match the growth
in computational demand [7]. Accordingly, the efficiency of event generation plays an important
role. Machine learning has become a promising tool to address this challenge.

Here, we focus on the hard interaction. The time-consuming detector simulation that post
processes the output of the event generator makes it desirable to produce unit weight events
using rejection sampling. However, for large parton multiplicities the efficiency can be very
low due to the high phase-space dimensionality. While other methods aim at improving the
unweighting efficiency [8–15], we here consider a complementary strategy. The underlying idea
is that the overall event generation time can be reduced by reducing the number of calls to the
matrix element (ME), which is typically the most expensive part of the calculation, especially
at high multiplicity.

We report on the results of combining the findings of two previous studies. In Ref. [16] the
authors presented a factorisation-aware surrogate model for QCD MEs. We briefly describe the



model in Sec. 2 and explain how we extended it to hadronic initial states and massive partons.
Subsequently, in Sec. 3, we describe the two-stage surrogate unweighting algorithm of Ref. [17].
It makes use of a fast and accurate ME surrogate to speed up unweighted event generation while
maintaining unbiasedness by introducing a second unweighting step. Our results of applying the
combination of the two ideas to LHC production processes are shown in Sec. 4. We end with
our conclusions in Sec. 5.

2. Matrix element emulation with factorisation-aware neural networks
The factorisation properties of QCD matrix elements in their soft and collinear limits can be
written as

|Mn+1|2 → |Mn|2 ⊗Vijk , (1)

where the (n + 1)-body ME |Mn+1|2 factorises into a reduced ME in n-body phase space and
a singular factor Vijk. In the dipole formalism introduced by Catani and Seymour in Ref. [18]
all divergences are captured by dipole functions Dijk which can be used to build an ansatz for
the colour and helicity summed ME:

|Mn+1|2 ≈
∑
{ijk}

CijkDijk . (2)

The indices i, j and k label the three partons involved in the splitting process. Since the
coefficients Cijk are more well behaved than the ME itself, they are better suited as a learning
target for a NN. The NN does not need to learn the singular behaviour in infrared regions of
phase space as these are described by the dipole functions. This makes it possible to accurately
fit a ME over the whole sampled phase space with a single, comparably simple NN.

When the model was originally introduced in Ref. [16], the authors considered jet production
processes in e+e− collisions where only one type of dipole is needed. In Sec. 4 we consider
processes with QCD initial states and massive partons in the final state. Therefore two extensions
of the model are necessary. First, we add the three types of dipoles where the emitter or spectator
is in the initial state. Secondly, we include the massive forms of the dipole functions. Since they
are more complex than the massless versions, we use only the minimal number of massive dipoles
for each partonic channel.

The inputs to the NN are the 4-momenta p of the external particles, the dipole variables
yijk and the kinematic invariants sij of all pairs of external particles. The latter two are not
independent since they are derived from the momenta. After preprocessing of the inputs using
normalisation and logarithmic scaling, they are processed by four hidden layers with 128 nodes
each. The architecture of the NN is illustrated in Fig. 1. It uses the same number of hidden
layers and nodes as the less accurate model of Ref. [17] and thus the evaluation time is similar.
It is only slightly increased due to the more involved pre- and post-processing of the inputs and
outputs.

To demonstrate the quality of the model and the extension to QCD initial states we show
in Fig. 2 the truth-to-prediction ratio |M|2true/|M|2pred between the true and the emulated ME

against the true ME for the process gg → e−e+ggdd̄ contributing to Z + 4 jets production at
the LHC. It is more challenging than the examples considered in Ref. [16], due to the higher
dimensionality and the more complicated singularity structure. This manifests itself in the
fact that the values of |M|2 extend over 40 orders of magnitude and leads to a less accurate
approximation. However, for the vast majority of points the ratio is close to one. At large values
of |M|2true the deviations are mostly small. We find somewhat larger deviations at small values
of |M|2true. However, these contribute only little to the total cross section.

As shown in Ref. [20], the method can be extended to loop MEs using antenna functions.
Both tree-level and one-loop antennae are needed but since the same singularity structure is
described by fewer antennae than dipoles, the number of contributing terms is comparable.



Figure 1: A simplified sketch of our neural network emulator showing input variables, hidden
layers, and outputs Cijk. Figure taken from Ref. [19].

3. Event unweighting with matrix element surrogates
Let us assume that we have a Monte Carlo sampling algorithm at hand that produces events
with weights w such that the cross section of the target process can be estimated as the mean
of the weights. The usual procedure for generating unweighted events would be to use rejection
sampling. The approach of our surrogate unweighting algorithm is similar but employs two
rejection sampling steps. In the first step, we draw a trial event from the proposal distribution
and accept or reject the event based on the surrogate weight s. For this, we uniformly draw
a random number R1 from [0, 1) and accept the event if s > R1 · wmax, where wmax is the
predetermined weight maximum. Only if an event has been accepted we calculate the true
event weight w and determine the ratio x = w/s. For the second rejection sampling step we
generate a second random number R2 and accept the event if x > R2 · xmax. After repeating
the procedure several times, the set of events that have been accepted in both steps form an
unweighted event sample. Since the computationally expensive ME only has to be evaluated for
the events that have been accepted in the first step, resources can be saved provided that the
surrogate is fast and that the acceptance rate is much higher in the second step than in the first
one. The requirements for the latter are that the unweighting efficiency of the standard method
is fairly low and the surrogate is highly accurate.

There is a subtlety concerning the weight maxima wmax and smax. They have to be determined
from an event sample of finite size. As a consequence, it is not guaranteed that they are the actual
maximum values. If, during unweighted event generation, an event with a weight exceeding the
respective predetermined maximum is encountered, an overweight has be assigned to it. The
final weight, after both accept/reject steps, is then given by w̃ = max(1, s/wmax)·max(1, x/xmax)
and the event sample is partially unweighted. As long as the overweights are taken account of,
the distribution of events is statistically correct. To keep the effects of overweights under control,
we use the following method. Based on an initial event sample, we set wmax and xmax such that
the overweights do not contribute more than 0.1% to the total cross section. Note that the same
method is generically used by Sherpa.

4. Results
We train the model on 1M events generated by Sherpa using TensorFlow [21] andKeras [22].
As a loss function we use the mean squared error. The trained model gets exported in the
Onnx format [23]. For model evaluation during unweighted event generation we use the Onnx
Runtime [24] in a customised version of Sherpa-2.2. The true colour summed MEs get evaluated



Table 1: Effective gain factors for different processes. For comparison the results obtained using
the naive neural network surrogate model from Ref. [17] are given. Note that the naive model
includes the phase space weight while the dipole model learns the matrix element weight only.

Process gg → e+e−ggdd̄ gg → e+e−gggdd̄ uū → tt̄dd̄g gg → tt̄ggg ug → tt̄gggu

feff
naive 2 26 1 3 11
dipole 16 269 20 61 354

by Sherpa’s built-in ME generator Amegic [25]. Throughout the event generation loop all
calculations are done sequentially on a single CPU core.

As a first assessment of the quality of the factorisation-aware surrogate, we show in Fig. 3
the distribution of the ratio x = w/s between the true event weights and the surrogate weights
for the partonic process gg → e−e+ggdd̄. For comparison, we also present the results obtained
using the simpler non-factorisation-aware (naive) surrogate model from Ref. [17]. We note that
the naive model approximates the full event weight while the factorisation-aware model solely
learns the ME weight and has to be augmented by the true phase-space weight, which is cheap to
evaluate though. In Fig. 3 it can be seen that the dipole model achieves a narrower distribution
of weights and a smaller xmax, 2.6 compared to 41.5. This means that for the bulk of the events
the dipole model gives a better approximation and that more events will be accepted in the
second unweighting step.

As the main figure of merit we use the effective gain factor defined as the ratio between
the average time it takes to generate an unweighted event using the standard method and the
average time it takes using the two-stage surrogate unweighting algorithm:

feff :=
Tstandard

Tsurrogate
. (3)

It includes the evaluation times of the matrix element and phase space weights as well as the
time that is spent on rejected events.

We apply our method to partonic multijet processes in order to measure its performance. In
particular, we consider various partonic channels contributing to Z + {4, 5} jets and tt̄+ {3, 4}
jets production in proton-proton collisions at

√
s = 13TeV. For these, the number of relevant

dipole terms ranges from 40 to 138. The results for the effective gain factors are shown in Tab. 1.
For comparison, we also present the results obtained using the simpler non-factorisation-aware
(naive) surrogate model from Ref. [17]. For the dipole model we achieve gain factors between
16 and 354. In all cases, the gains are significantly larger than with the naive model, ranging
between 1 and 26. The largest gains are obtained for the processes with the highest multiplicity
where the computationally most demanding MEs are encountered.

At large parton multiplicity it becomes attractive to sample the colours of the external partons
instead of summing over them, see for example Ref. [26]. It is thus interesting to consider an
extension of our method to colour-sampled amplitudes. We note that our model ansatz Eq. (2)
is tailored to colour-summed MEs. However, as a naive approach it is possible to feed the colour
assignments as additional inputs to the model and let the NN learn the underlying structure.
We tested this for the processes gg → e−e+ggdd̄ and gg → tt̄ggg using Sherpa’s built-in ME
generator Comix [27] but we were not able to achieve net gains. Several reasons for this can be
identified. One being that the addition of the colour assignments increases the dimensionality of
the problem and thus the approximation of the model worsens. Furthermore, the evaluation of
a single colour amplitude is much faster than the evaluation of a whole colour summed ME. As
a consequence, the emulated amplitude is not that much faster than the true one. In addition,
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Figure 2: 2d histogram of the matrix element truth-
to-prediction ratio for the Z + 4j process gg →
e−e+ggdd̄. Along the axes, we plot the marginal
distributions of the matrix element (top), and the
truth-to-prediction ratio (right). High population
bins are illustrated as yellow, while low population
bins, down to single points, are depicted in purple.
Figure taken from Ref. [19].
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Figure 3: Ratio distributions of ex-
act weights and their surrogate for the
channel gg → e+e−ggdd̄ (Z + 4 jets)
using the factorisation-aware emula-
tion of the matrix-element weight
(dipole) and the combined matrix-
element and phase-space weight from
Ref. [17] (naive). Figure taken from
Ref. [19].

this means that the evaluation of the phase-space weight contributes more significantly to the
event generation time.

5. Conclusions
In these proceedings we reported on applying the combination of the factorisation-aware ME
emulator of Ref. [16] and the unbiased two-stage unweighting algorithm of Ref. [17] to LHC
multijet production processes. We found that the surrogate model is highly accurate for the
colour-summed MEs of the considered processes. It was necessary to extend the model to
hadronic initial states and massive external partons. Furthermore, we achieved large gain factors
when using the model for unweighted event generation. We have taken the first steps towards
transferring the accomplishments to colour-sampled amplitudes. Future work is necessary to
complete this, especially by developing optimised surrogate models.
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