
Comparing and improving hybrid deep learning

algorithms for identifying and locating primary

vertices

S Akar1 , M Peters1, H Schreiner2, M D Sokoloff1 , W Tepe1

1 University of Cincinnati, Cincinnati, OH 45221, USA
2 Princeton University, Princeton, NJ 08544, USA

E-mail: simon.akar@cern.ch

Abstract. Using deep neural networks to identify and locate proton-proton collision points, or
primary vertices, in LHCb has been studied for several years. Preliminary results demonstrated
the ability for a hybrid deep learning algorithm to achieve similar or better physics performances
compared to standard heuristic approaches. The previously studied architectures relied directly
on hand-calculated Kernel Density Estimators (KDEs) as input features. Calculating these
KDEs was slow, making use of the DNN inference engines in the experiment’s real-time analysis
(trigger) system problematic. Here we present recent results from a high-performance hybrid
deep learning algorithm that uses track parameters as input features rather than KDEs, opening
the path to deployment in the real-time trigger system.

1. Introduction
The LHCb experiment was recently upgraded for Run 3 of the LHC. It will record proton-
proton collision data at five times the instantaneous luminosity of Run 2. The average number
of visible primary vertices (PVs), proton-proton collisions in the detector closest to the beam-
crossing region, will increase from 1.1 to 5.6. The experiment will move to a pure software
data ingestion and trigger system, eliminating the Level 0 hardware trigger altogether [1]. A
conventional PV finding algorithm [2, 3] that satisfies all requirements defined in the Trigger
Technical Design Report [4] serves as the baseline. In parallel, we have been developing a hybrid
machine learning algorithm, designed to run in the initial stage of the LHCb upgrade trigger.

The initial algorithm defined a one-dimensional Kernel Density Estimator (KDE) histogram,
plus two more one-dimensional histograms, to describe the probabilities of tracks traversing
small voxels in space. These feature sets were modified to use two KDEs rather than one. [5–7].
“Classic” convolutional Neural Networks (CNNs), referred to as KDE-to-hists models, produce
one-dimensional histograms that nominally predicts Gaussian peaks at the locations of true PVs
using three (or four) input histograms as their feature sets. A hand-written clustering algorithm
identifies the candidate PVs and their positions. A first set of results used a “toy Monte Carlo”
with proto-tracking [5]. Using track parameters produced by the LHCb Run 3 Vertex Locator
(VELO) tracking algorithm [8] leads to significantly better performance [6].

The original KDE [6] is a projection of a three-dimensional probability distribution in voxels
that has contributions only when two tracks pass close to each other. Calculating this KDE
exactly is very time-consuming. One of the goals of our project is to predict PV positions
directly from tracks’ parameters. A proof-of-concept was presented last year [7]. We trained a
model, tracks-to-KDE, predicting the KDE using the tracks parameters as input and merged

https://orcid.org/0000-0003-0288-9694
https://orcid.org/0000-0001-6181-4583

POCA 
 9 params/track

max(N tracks)=250

6 Fully Connected
layers building  

(8 x 100) output
channels  
x (40/evt)

UNet layers summing the 8
contributions per bin to construct

final predicted histogram

100-bin hist
as output 
x (40/evt)

UNet layers Fully Connected
layers Inputs Outputs

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 1. This diagram illustrates the end-to-end, tracks-to-hist, deep neural network
used to predict an event’s target histogram from its tracks’ poca-ellipsoids. Each event is
now sliced in 40 independent 100-bin histograms. Six fully connected layers populate 8 100-
bin channels in the last of these layers, for each track. These contributions are summed and
processed by a U-Net model with 5 convolutional layers to construct the final 100-bin histogram.

it with a trained version of a KDE-to-hists model. Mediocre performance, compared to the
original KDE-to-hists model, was achieved after a final training allowing all weights of the
merged tracks-to-hists model to float.

In the last PV-finder update [6], we also presented studies of alternative KDE-to-hists model
architectures. In particular, we showed that the capacity of our original CNN architecture [5] to
learn increased with the number of parameters, as expected from first principles. The study of a
modified version of the popular U-Net architecture [9], showed similar performances compared
to the best classic CNN architectures, and it trained more quickly. Here we present improved
results from an updated architecture for tracks-to-hists. A brief description of the model in
given in Sec. 2. Performance is discussed in Sec. 3. A summary is presented in Sec. 4

2. Model architecture and training strategy
Building on our previous experience, we define a merged tracks-to-hists model; this
architecture is based on the one used in the proof-of-concept presented in the last update [7]. The
latest tracks-to-hists model, whose architecture is shown in Fig. 1, includes a few updates:
the tarcks-to-KDE part of the model consists of 6 fully connected layers that are initially trained
to produce a KDE and the weights of the first 5 layers are temporarily frozen; a variation with 8
latent feature sets is merged to the trained KDE-to-hists DNN where the classical CNN layers
are replaced by a U-Net model. Critically, we also updated the structure of the input data for
training and inference. In the original approach, the one-dimensional feature sets consisted of
4000 bins along the z-direction (beamline), each 100µm wide, spanning the active area of the
VELO around the interaction point, such that z ∈ [−100, 300]mm. In place of representing each
event by a single 4000-bin histogram (feature set), we now slice each event into 40 slices of 100
bins each. This approach is motivated by the fact that the shapes of the target histogram are
expected to be invariant as a function of the true PV position and it is easier for a DNN to learn
to predict target histograms over a smaller range of bins. Also, with an average of ∼ 5 PVs per
event, most of the bins in both the KDE and target histograms have no significant activity. The

Figure 2. Plots illustrating typical examples of target (shown in red) versus predicted (shown
in blue) histogram. Each of the four plots is drawn from different slices of different individual
events. Each of the 100 bins in the histogram corresponds to a range in the z-direction of 100µm.
Predicted PVs that are matched to the correct true PV (majority of cases) are identified by a
green tick in the plots. Example of missed true PV (orange cross label) and false positive
prediction (FP label) are shown in the bottom-left and bottom-right plots, respectively.

40 slices of 100 bins are independent and homogeneous between events. Each slice is treated
independently, after which the predicted 4000-bin histogram is stitched back together.

Training on nVidia RTX 2080Ti GPUs is performed in several steps. First, weights for
the tracks-to-KDE model that uses individual tracks parameters evaluated at their points of
closest approach (poca-ellipsoid) to the beamline [7] as input features to predict the KDE are
determined. Then, the U-Net KDE-to-hists model is trained using the hand-calculated KDEs
as the input feature set. Finally all weights and biases in the combined tracks-to-hists model
are allowed to float. An asymmetry parameter between the cost of overestimating contributions
to the target histograms and underestimating them [5] is used as a hyperparameter to allow
higher efficiency by incurring higher false positive rates.

3. Performances
Evaluation Performance evaluation is obtained by a matching procedure done by a heuristic
algorithm, based on the PV positions along the beam axis, z. Figure 2 shows typical examples of
predicted and target histograms using the final tracks-to-hists model. In the previous report
of PV-finder performances [5–7] a predicted PV was matched if the distance, ∆z, between it’s
position, zpred, and the true PV position, ztrue, satisfied ∆z = |zpred−ztrue| ≤ 0.5mm. The false
positive rate is obtained from the ratio of remaining predicted PVs after the matching procedure
over the total number of true PVs. This approach suffered a few limitations, independent of
the intrinsic DNN algorithm performances. For instance, it is known that a PVs resolution
depends on the number of tracks originating from it. In case of low-multiplicity PVs, the
predicted histogram from the DNN algorithm, similar in shape to the target histogram, can
be displaced more than 0.5mm from the true PV position. This scenario can simultaneously
“produce” a missed PV (reduced efficiency) and a false positive signal (increased false positive
rate). To address this issue, a new matching procedure is used. Instead of a fixed window
around the predicted PV position, a resolution function is introduced in the matching procedure.
The resolution for a given predicted PV, σ(z), is a function of the standard deviation of the
predicted histogram multiplied by a constant parameter that can be tuned. Using this definition,
a predicted PV is now matched if ∆z = |zpred − ztrue| ≤ 5σ(z). In Fig. 2 we observe that for
matched PVs, the standard deviation of the predicted peaks (blue entries) is slightly larger than

0 10 20 30 40 50 60 70 80 90 100 110
LHCb long tracks

0.75

0.8

0.85

0.9

0.95

1

Ef
fic

ie
nc

y

0 10 20 30 40 50 60 70 80 90 100 110
LHCb long tracks

1
2
3
4
5
6

310×

PV

s

0.99

0 10 20 30 40 50 60 70 80 90 100 110
LHCb long tracks

1
2
3
4
5
6

310×

PV

s

0 10 20 30 40 50 60 70 80 90 100 110
LHCb long tracks

1
2
3
4
5
6

310×

PV

s

Events: 10 000
PVs: 52 512 
Found: 51 112 (97.3%) 
Missed: 1 400  
FP: 609 (1.2% || 0.061/evt)

LHCb simulation

LHCb simulation

0.4− 0.2− 0 0.2 0.4
(z) [mm]∆

0

2

4

6

8

10

12

310×

PV

s

]m µ 0.4 [± = 68.6 σ
]m µ 0.3 [± 16.1 − = µ

LHCb simulation

Figure 3. (left) Efficiency of finding true PVs as a function of the number of fully reconstructed
originating tracks. The integrated efficiency and false positive rate are also reported. (right)
Distribution of the distance, ∆z, between the predicted and true PV position for matched PVs
as defined in the text, overlaid by a fitted Gaussian.

that of the corresponding true PVs (red entries), estimated from the number of tracks. Peaks
with larger standard deviations are typically associated with PVs with fewer tracks.

Predicted position and efficiency The reported results come from statistically independent
validation samples. Using the matching procedure described above, we quantified the
performances of the trained tracks-to-hists DNN on a sample of 10K events corresponding to
slightly more than 50K true PVs. Figure 3 shows the efficiency of finding true PVs as a function
of the number of fully reconstructed originating tracks, labelled LHCb long tracks, defined as
tracks with hits in all the elements of the LHCb tracking system. We observe that the efficiency
is very high (> 99%) and stable for PVs with more than 20 tracks, and rapidly decreasing for
PVs with fewer tracks. Also shown in Fig. 3 is the distribution of the distance, ∆z, between the
predicted and true PV position for matched PVs. From a fit using a Gaussian distribution, we
observe a small bias of −16.1µm on the predicted PV position. Most notably, the majority of
matched PVs have a ∆z value below the bin width of the target histogram of 0.1mm.

Performances evolution Figure 4 shows how the performance of the DNN algorithms have
evolved over time. The efficiency is shown on the horizontal axis and the false positive rate per
event is shown on the vertical axis. The solid blue circles show the performance of any early
KDE-to-hists model described at ACAT-2019 [5]. The green squares show the performances of
a KDE-to-hists described at Connecting-the-Dots in 2020 [6]. Both of the above models were
trained using “toy Monte Carlo” with proto-tracking. All subsequent DNN models were trained
using full VELO tracking algorithm [8], leading to significantly better performances (red triangles
to be compared to green squares). The cyan circles and the yellow squares correspond to the
best achieved performances for KDE-to-hists models using either a classical CNN architecture
or a U-Net model described at CHEP-2021 [7]. The performances of all above models were
obtained using the “old” matching procedure with a fixed searching window of 0.5mm. The
magenta diamonds show the performance of the tracks-to-hist model described in Sec. 2.
These performances are obtained using the improved matching procedure described above. The

Figure 4. Comparison between the performances of models reported in previous years and the
newest model (magenta diamonds). An asymmetry parameter described in the text is varied to
produce the families of points observed.

performance of the new tracks-to-hist model enables the DNN to simultaneously reach high
efficiencies (> 97%) and low false positive rates (0.03 per event or 0.6% per reconstructed PV).

4. Summary and Conclusions
Since we presented results at CHEP 2021, we have updated the tracks-to-hists model to
produce the first competitive end-to-end hybrid deep learning algorithms for identifying and
locating primary vertices based solely on tracks’ parameters as input features. The performance
of this model reaches very high efficiencies with low false positive rates. By removing the (very
slow) KDE calculation used as part of the hybrid KDE-to-hists models, we have opened the
path to include a PV finding DNN in the real-time trigger system of the experiment. Studies
are currently ongoing to validate the feasibility of including a version of the tracks-to-hists

model to execute in the CUDA cores (or in the tensor cores) of the GPUs constituting the LHCb
trigger system. We also plan on studying the effect of quantization on the model performances,
as well as the size of the model itself (number of nodes). Our specific algorithms are being
designed for use in LHCb with its Run 3 detector. Developing and deploying machine learning
inference engines that are highly performant and satisfy computing system constraints requires
sustained effort. The results reported here should encourage work focused on using DNNs for
identifying vertices in other high energy physics experiments as well.

5. Acknowledgments
The authors thank the LHCb computing and simulation teams for their support and for

producing the simulated LHCb samples used in this paper. The authors also thank the full
LHCb Real Time Analysis team, especially the developers of the VELO tracking algorithm [8]
used to generate the “full LHCb MC” results presented in Fig 4.

This work was supported, by the U.S. National Science Foundation under Cooperative
Agreement OAC-1836650 and awards PHY-1806260, and OAC-1450319.

References
[1] Aaij R et al. (LHCb) 2014 LHCb Trigger and Online Upgrade Technical Design Report URL

https://cds.cern.ch/record/1701361

[2] Reiss F 2020 Excerpts from the LHCb cookbook — RECEPTS for testing lepton universality
and reconstructing primary vertices presented 18 12 2020 URL https://cds.cern.ch/

record/2749592

[3] Reiss F et al. (LHCb) 2020 Fast parallel Primary Vertex reconstruction for the LHCb
Upgrade talk presented at Connecting-the-Dots 2020 URL https://indico.cern.ch/

event/831165/timetable/?view=standard

[4] Aaij R et al. (LHCb) 2019 JINST 14 P04013 (Preprint 1812.10790)

[5] Fang R, Schreiner H F, Sokoloff M D, Weisser C and Williams M 2020 J. Phys. Conf. Ser.
1525 012079 (Preprint 1906.08306)

[6] Akar S, Boettcher T J, Carl S, Schreiner H F, Sokoloff M D, Stahl M, Weisser C and
Williams M 2020 An updated hybrid deep learning algorithm for identifying and locating
primary vertices (Preprint 2007.01023)

[7] Akar S, Atluri G, Boettcher T, Peters M, Schreiner H, Sokoloff M, Stahl M, Tepe W, Weisser
C and Williams M 2021 EPJ Web Conf. 251 04012 (Preprint 2103.04962)

[8] Hennequin A, Couturier B, Gligorov V, Ponce S, Quagliani R and Lacassagne L 2020 JINST
15 P06018 (Preprint 1912.09901)

[9] Ronneberger O, Fischer P and Brox T 2015 Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015 ed Navab N, Hornegger J, Wells W M and Frangi A F
(Cham: Springer International Publishing) pp 234–241 ISBN 978-3-319-24574-4 (Preprint
1505.04597)

https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/2749592
https://cds.cern.ch/record/2749592
https://indico.cern.ch/event/831165/timetable/?view=standard
https://indico.cern.ch/event/831165/timetable/?view=standard
1812.10790
1906.08306
2007.01023
2103.04962
1912.09901
1505.04597

