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Abstract. We present a machine-learning based method to detect deviations from a reference
model, in an almost independent way with respect to the theory assumed to describe the new
physics responsible for the discrepancies.

The analysis is based on an Effective Field Theory (EFT) approach: under this hypothesis
the Lagrangian of the system can be written as an infinite expansion of terms, where the first
ones are those from the Standard Model (SM) Lagrangian and the following terms are higher
dimension operators. The presence of the EFT operators impacts the kinematic distributions
by producing deviations from the shapes expected when the SM Lagrangian alone is considered.

We use a Variational AutoEncoder (VAE) trained on SM processes to identify EFT
contributions as anomalies. While the output of the VAE when evaluated on the SM sample
is very similar to the input, the events modified by EFT operators show output distributions
very different from the inputs and hence they accumulate in the tails of the loss function. Since
the training of the model does not depend on any specific new physics signature, the proposed
strategy does not make specific assumptions on its nature.

In this talk we will discuss in detail the above-mentioned method using generator level VBS
events produced at LHC and assuming, in order to estimate the sensitivity to possible new
physics contributions, an integrated luminosity of 350fb−1.

1. Introduction
The discovery of the Higgs boson by the Atlas and CMS collaborations [1, 2] in 2012 marked a
major milestone in the validation of the Standard Model (SM) of particle physics. Nevertheless,
many questions still remain unanswered: despite its success in providing accurate experimental
predictions and theoretical explanations for many phenomena, the SM cannot be considered as
a complete theory of fundamental interactions.

While the CERN Large Hadron Collider (LHC) has collected an unprecedented amount of
data, no significant deviations from the SM have been observed yet. A possible explanation is
that searches for Beyond Standard Model (BSM) phenomena are typically highly dependent on
the specific theoretical model they target. Since the number of possible BSM theories and their
variations in terms of free parameters is extremely large, and only few of them can be tested,
it is possible that so far we have simply chosen the wrong theories to look for. An alternative
approach is to build analyses that are as independent as possible from any underlying assumption
on the new physics models.

In order to design an effective analysis of such kind, a general but still predictive theory that
can regroup the largest possible number of BSM processes is needed. With this in mind, we



chose to work within an Effective Field Theory (EFT) approach, where the SM is seen as the
low energy approximation of a more general theory. The low energy footprints of such theory
can be parametrized as higher order operators to be added to the SM Lagrangian, altering the
expected kinematic distributions of a given process.

Our analysis strategy relies on unsupervised learning. The idea is to train the model on
known physics, and then use it to detect EFT events as outliers, i.e. data following different
patterns than the ones the model was trained to recognize. The model we chose is a Variational
AutoEncoder (VAE) [3].

The physics process we used to test this strategy is the scattering of vector bosons (VBS),
an event that takes place at the LHC when two partons of the incoming protons radiate vector
bosons, which in turn interact. VBS is deeply connected to the electroweak symmetry breaking
mechanism as a Higgs-less SM theory leads to a divergence of the VBS cross-section with
increasing center of mass energy. Therefore, this process is a probe of the SM that is sensitive to
modifications of the electroweak sector, which makes it an ideal field for the searches for BSM
physics. In particular, we studied the set of VBS processes that leads to a final state with two
same-sign W bosons. The decay products of the vector bosons produce a clean signature in
the detector characterized by two jets with a large invariant mass in the forward region, two
same-sign charged leptons and missing transverse energy.

This study has been conducted neglecting any background process that populates the
aforementioned final state. We employed generator-level observables related to the kinematic of
the charged leptons and of the final state partons originating from the initial scattering.

2. The SM as an Effective Field Theory
In an EFT interpretation of the SM, a more complete theory is expected to involve new matter
content at energies well beyond the LHC scale, while its effects at low energy are parametrized
as the additional terms obtained from the expansion of the SM Lagrangian:

LEFT = LSM +
∑
i,d>4

ci
Λd−4

O(di) (1)

where Od
i is a set of dimension d operators, ci are the so-called Wilson Coefficients that gauge

the intensity of the operators and Λ represents the new physics energy scale. The first non-zero
term following the SM Lagrangian is the set of dimension-six operators, since odd-dimensional
operators would violate the accidental symmetries of the SM and therefore they are not taken
into account. We employed the SMEFTsim package [4] to generate the EFT predictions at
leading order in the U35 flavour scheme and mW input scheme for the following operators:

QW , Q(1)
Hq, QHW , Q(1)

qq , Q(1,1)
qq , Q(3)

qq , Q(3,1)
qq . The events were generated at parton level via

MadGraph5 aMC@NLO [5].
The terms in the Lagrangian can be rewritten in terms of probability amplitudes, considering

one operator at a time, as:

ABSM = ASM +
cα
Λ2

· AQα (2)

By squaring ABSM it is possible to obtain a quantity proportional to the probability of an event:

|ABSM |2 = |ASM |2 + cα
Λ2

· 2Re(ASMA†
Qα

) +
c2α
Λ4

· |AQα |2 (3)

here the first term represents the pure SM contribution, while the following terms introduce a
linear (LIN) and quadratic (QUAD) dependence on the EFT amplitudes. The overall effect of
these operators is a modification of the kinematic distributions of a given process, as shown in
figure 1. The entity of such modifications depends on the relative weight of the operators.



Figure 1. SM, LIN and QUAD distributions for δηjj , ηj2 and log10(pT,j1), normalised to area
1. The weighted sum of the three contributions gives the BSM distribution.

3. Isolating EFT events with a VAE
First we scaled the input distributions between 0 and 1 and we computed the logarithm of the
kinematic variables to reduce their dynamic range. We split the SM sample in two subsets
comprising 80% and 20% of the total 900000 events, respectively used for training and testing.
The whole strategy is implemented through the scikit-learn [6] and TensorFlow [7] libraries.

3.1. Simple VAE model
The VAE model is shown in figure 2. We studied a set of kinematic and angular distributions
relevant for SSWW: the invariant masses of the dilepton/dijet systems (mll, mjj), the transverse
momentum of the two leptons/jets (ptl1,2 , ptj1,2 , the transverse momentum of the dilepton
system (ptll), the missing transverse momentum (MET), the pseudorapidities of leptons/jets
(ηl1,2, ηj1,2, and the pseudorapidity and azimuthal angle differences between the two jets (∆ηjj ,
∆Φjj). The inputs are first encoded as distributions in the latent space, from which a point is
then sampled and decoded. Encoder and decoder are two separate networks comprising several
densely connected layers, later combined into an end-to-end model. The model is trained by
minimizing a sum of the Mean Squared Error (MSE) between input and output, to ensure a
good reconstruction of the inputs, and the so-called Kullback-Leibler Divergence (KLD), which
accounts for a regularization of the latent space by forcing the latent distributions to be close
to gaussians. The Adam algorithm is used to optimize the training.

- Dense Layer
- Input data
- Latent space

- Leaky ReLU activation
- Linear activation

ENCODER DECODER

Figure 2. The VAE model employed.

The VAE model is trained only on SM events, therefore it learns the underlying patterns of
known physics. Once trained, the model is evaluated also on BSM events: since the underlying
mechanisms are different from the ones the model learnt during training, the output distributions



present differences with respect to the input ones (figure 3). To assess the quality of the
reconstruction of an event we compute the MSE between input and output, averaged on all
the observables. By selecting the events for which the MSE is greater than a certain threshold
(figure 4), we are able to identify an anomaly-enriched region.

Figure 3. Comparison between the input and
output of the model in the case of SM and BSM
distributions for the pseudorapidity of the leading jet.

Figure 4. MSE for SM(blue) and
BSM(red) events. Anomalous events
lie in the tail of the loss function.

3.2. Embedding a classification step in the training to optimize for discrimination
The main limitation of this strategy is that even though our goal is the isolation of EFT events,
during the training the model is only optimized to reconstruct a SM sample and the choices
that improve the SM reconstruction are not always optimal for discrimination. For example,
during our studies we have noticed that a larger latent space produces a better reconstruction
for SM events but also decreases the discrimination power against EFT perturbations. This can
be interpreted given the fact that a more complex latent space allows for the model to better
learn the underlying data structure, and therefore the SM reconstruction improves. However,
the model’s extrapolation capabilities improve as well, thus degrading its discrimination power.

In order to overcome such limitation, we introduced a classification step in the training
procedure by adding a third component to the model, namely a two-layers neural network that
works as a classifier.

This new model is trained both on SM and EFT events: the VAE is trained to reconstruct
the SM subset via the minimization of the MSE and KLD, then both the SM and EFT samples
are run through it. The resulting MSE and KLD losses are then given as inputs to the classifier,
which is trained by minimizing a binary cross-entropy. This strategy allows for embedding the
discrimination process within the training, but at the price of gaining an additional dependence
on the modelization of the new physics contribution. To keep the strategy as model independent
as possible, we decided to use a single operator during training, and to later evaluate the
performances of the model on the other ones as well.

3.3. Results
To quantify the discrimination power of the VAE and VAE+NNmodels we defined a proxy metric
for the significance σ, which depends on the Wilson coefficients of the operator considered while
testing the model:

σ(cop) =
|BSM(cop)− SM |√

SM
=

|LIN(cop) +QUAD(c2op)|√
SM

(4)

The last equality stems from the fact that, given our theoretical framework, the amount of
events predicted following a BSM prior minus the events predicted considering only the SM



contributions equals the amount of events predicted considering the LIN and QUAD operators.
A model is considered sensitive to a given operator if σ = 3 for some value of cop (table 1). The
first conclusion we can draw is that it is possible to separate EFT contributions from known
physics by means of the VAE model. Furthermore, the embedding of the classifier in the model
improves the discrimination without impinging excessively the generality of the approach: the

performances improve significantly for QW , on which the model was trained, but also for Q(1)
qq ,

Q(1,1)
qq and deteriorate only slightly for Q(3)

qq , Q(3,1)
qq and QHW . Furthermore, the new model is

sensitive to Q(1)
Hq, which was not detected by the simple VAE.

Table 1. The value of cop for which σ(cop) = 3, considering an integrated luminosity of 350
fb−1. The results for the VAE+NN refer to a model trained to reconstruct SM VBS EWK
events and to discriminate them from a sample comprising contribution from the QW operator:
during training cW is set to 1, then the events are properly weighted by the correct value of cop.

model cW c1qq c1,1qq c3qq c3,1qq c1Hq cHW

VAE 0.34 0.56 0.29 0.04 0.06 - 0.41
VAE+NN 0.13 0.17 0.18 0.11 0.11 0.61 0.65

4. Conclusions and future perspectives
This study demonstrates the feasibility of isolating an EFT-enriched region by means of an
unsupervised machine learning model. By training the model to recognise only the known SM
physics patterns, we were able to detect BSM phenomena in a model-independent fashion. Such
procedure was tested using the SSWW VBS process, considering an integrated luminosity of 350
fb−1. This result meets the expectations intended for such kind of strategy, aimed at providing a
region enriched with potentially interesting events rather than at enhancing the signal selection
efficiency for specific BSM models.

While this study proved that unsupervised models can be instrumental for the detection of
EFT perturbations with respect to the SM VBS SSWW signature, a detailed analysis including
other sources of backgrounds is needed in order to assess the concrete sensitivity reach of the
proposed strategy. Further studies will be needed in this direction including the major sources
of background for the 2l2ν + 2j final state, namely events with nonprompt or fake leptons and
the small QCD induced production.
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