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Abstract. In the field of high-energy physics, deep learning algorithms continue to gain in
relevance and provide performance improvements over traditional methods, for example when
identifying rare signals or finding complex patterns. From an analyst’s perspective, obtaining
highest possible performance is desirable, but recently, some attention has been shifted towards
studying robustness of models to investigate how well these perform under slight distortions
of input features. Especially for tasks that involve many (low-level) inputs, the application of
deep neural networks brings new challenges. In the context of jet flavor tagging, adversarial
attacks are used to probe a typical classifier‘s vulnerability and can be understood as a model
for systematic uncertainties. A corresponding defense strategy, adversarial training, improves
robustness, while maintaining high performance. Investigating the loss surface corresponding
to the inputs and models in question reveals geometric interpretations of robustness, taking
correlations into account.

1. Introduction
With powerful machine learning (especially deep learning) algorithms, new physics analyses have
been enabled and established ones report improved results over previous iterations that utilized
only cut-based strategies, shallow networks or techniques like BDTs [1]. For object identification,
which serves as a crucial ingredient to various analyses carried out at experiments at the CERN
Large Hadron Collider, it is therefore of prime interest to provide highly-performant algorithms,
where many features enter complex architectures to capture as much information as possible,
including correlations between observables.

Deep Neural Networks are suited to perform the aforementioned difficult tasks like jet flavour
identification, and many low-level features related to the jet constituents enter state-of-the-art
taggers [2, 3, 4, 5, 6]. With high performance however comes high reliability on the modeling
of the involved input features, especially since supervised machine learning techniques utilize
labeled simulated samples [7]. These likely do not capture all detector effects and can be fairly
different for non-identical MC generators, when comparing steps like parton showering and
hadronization [8]. Calibration has therefore always been a necessary step towards improving
agreement between the domain on which such algorithms have been trained (simulation),
and measured data [9, 10]. Even after applying a high level of scrutiny and utilizing a set
of independent control regions, a certain level of disagreement may remain after calibration,
becoming increasingly relevant for analyses where derived scale factors factorize for final states
with high (b-/c-tagged) jet multiplicities.



1.1. Related work
Reliability on low-level features is a common property in several areas of high-energy physics, and
so might be the susceptibility towards slightly distorted features which can lead to drastically
reduced performance, better known under the term of adversarial attacks yielding adversarial
samples [7, 11, 12, 13]. The fundamental principle explored in Ref. [13] is that such inherent
vulnerability can be turned into robustness, when carefully defending against adversarial attacks
via adversarial training. There it has been shown that improving robustness can be achieved
without loss of performance [13]. The technique which has been used extensively is the Fast
Gradient Sign Method (FGSM), a first order attack [12, 13]. After the proof-of-principle had
been introduced for a simple multilayer-perceptron architecture [13], the CMS Collaboration
has presented a successful application of adversarial training for the succeeding generation of
tagging algorithms, extending the strategy to convolutional (followed by recurrent and dense)
layers [14]. One core finding of Ref. [14] is the relation between adversarial robustness and
agreement between data and simulation, being explicitly prominent for light-flavoured jets. The
literature also mentions complimentary perspectives where adversarial training does not capture
uncertainties [15, 16]. The sentiment that theory-induced or generator-dependent modelings
can hardly be handled by adversarial methods is evident [16], however we intend to focus on
those mismodelings which can be mitigated by systematic regularization, which may play the
main role in promising control regions shown in Ref. [14]. Another limitation to consider when
applying adversarial training against FGSM attacks is that directions into which inputs are
shifted are somewhat predictable, and moreover, always treat all features independently with
the respective sign of the gradient, thus eliminating the full correlation between features and
leaving only discrete choices [13]. When aiming for robust algorithms that offer not only high
performance, but also generalization capabilities, the flatness of the underlying loss surface is
scrutinized as a proxy for the aforementioned desired qualities of the model. Several approaches
utilize the geometric properties of the loss [17] as a function of the model parameters (weights
and bias terms), but a study with respect to the input distributions has yet to be carried out.

1.1.1. Adversarial attacks versus systematic uncertainties While several restrictions have been
imposed to keep the artificial shifts of inputs somewhat realistic with respect to typically
observed mismodelings, such adversarial methods are reliant on the network’s properties. This
marks an unphysical scenario, as neither nature nor simulation of processes could have any
knowledge of the machine learning algorithms involved to tag the jets in an event. Thus, judging
a network’s capability to resist adversarial attacks might be biased towards the defense strategy
which explicitly mitigates the impact of specific attacks. It is unrealistic that any mismodeling
in simulation would shift inputs exclusively in the worst case direction pointing to steepest
increase of the loss function [7, 13]. For physics analysis, it is not of primary relevance to utilize
algorithms which are robust against adversarial attacks, but which allow generalization from
simulation to data and offer robustness towards systematic uncertainties. Therefore, the two
trainings studied in Ref. [13] (nominal and adversarial) are compared not only with nominal
and adversarial inputs, but also when being exposed to systematically distorted inputs which
point either in upwards or downwards direction [13]. In both cases, up- or downwards variation,
adversarial training performs better on distorted inputs than nominal training on same distorted
samples [13]. Similar conclusions can be drawn when exchanging the systematic variations with
random smearing / Gaussian noise [13]. In this paper we intend to augment the findings by
investigating the underlying loss function in the input feature space to propose a modified
training strategy which can improve the algorithm’s resilience.



2. Properties of loss manifolds for a jet tagging algorithm trained on nominal or
adversarial samples
The assumption of different geometry of loss manifolds has been motivated by observations made
when looking at the impact of adversarial attacks split by flavour, where adversarial training
behaves somewhat symmetrically, but adversarial attacks performed for nominal training push
inputs preferably into specific directions to invert expected physics [13]. While the illustrations
presented in Ref. [13] give a hint on how the loss surfaces of different training strategies could
look like, it has been an open question to perform realistic scans of such surfaces. First results
of such a visualization of geometry with respect to input variations are presented in Fig. 1. The
construction is obtained by first selecting a random jet drawn from a sample which has not been
used for training or validation. Focusing on two observables (for visualization purposes, using
well-understood global jet features), a grid of 500× 500 variations is generated, using a uniform
and symmetric binning around the original nominal features. Taking the full distribution of
the respective feature into account, the spanned range corresponds to ±0.5σ, ensured by only
working in the input feature space after standardization. While the target remains unchanged,
both the nominal and adversarial training are reevaluated on the resulting 250000 samples, and
the resulting loss is recalculated. Moving a jet’s pseudorapidity without changing transverse
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Figure 1. Different geometries of loss manifolds for nominal (bottom) and adversarial (top)
training.

momentum or other properties will not affect the respective network prediction error, or loss,
for adversarial training. Nominal training on the other hand is not agnostic to changes in any
of the two variables shown. While nominal training offers in general a lower network prediction
error, adversarial training offers a flatter manifold with a certain level of invariance with respect
to distortions of specific features. Figure 2 reveals how for nominal training, adversarial attacks
would find a clear direction, while for adversarial training, due to the invariance or symmetry
with respect to pseudorapidity, multiple directions are possible to increase the loss. Despite
this finding, only one specific direction will be chosen by the attack as a result of the inherent
operation of taking the sign of the gradient, although other directions would essentially lead to
the same effect.
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Figure 2. Possible directions
of adversarial attacks for different
models. Starting from kinematic
quantities which yield small loss,
multiple arrows can be found for
an FGSM attack imposed for ad-
versarial training, while only one
such arrow is constructed for nom-
inal training.

3. Discussion
This observation is a key element to understand why adversarial training may be preferred in
settings with potentially distorted inputs (due to experimental effects, precision and resolution
limitations) or other systematic differences between the domain on which the identification
algorithms have been trained (simulation) and the domain built from actually recorded detector
data. This can be interpreted as a sign of regularization induced by adversarial training.

3.1. Using properties of the loss manifold during training
Having probed the loss manifold on a macro-scale for two features which may not offer highest
discriminating power (and which have been reweighted to a common target distribution to
ensure bias-free predictions) [13], we propose to explore this technique more systematically and
potentially incorporate this into the training itself. Showing the loss surface as a function of two
input features is a simplification which allows us to investigate the geometry graphically. To
overcome this limitation, the loss manifold needs to be constructed in several more dimensions
in the feature space. Then, measuring flatness around the original inputs can be introduced as
an independent cross-check during training to probe and improve robustness. We can construct
a summary quantity as an additional term in the loss function, for example capturing the
maximally observed relative impact on the calculated cross-entropy loss when moving inputs in
the allowed Bσ

2
-ball. This can be weighted by a hyperparameter to control how much focus is

given to regularization, compared to plain performance metrics, and training would then follow
this modified loss function during backpropagation to update the model parameters.

3.2. Building other attacks which preserve directionality of the gradient of the loss function
From the observed loss surfaces it seems sufficient to continue focusing on first order attacks,
although taking the sign of the gradient (FGSM) might be too inefficient when actual directions
of gradients and relative contributions of features are to be taken into account. Using the p-
norm of gradients where e.g. p = 2 instead, the individual input feature’s contribution can be
maintained quantitatively. The resulting distortion vector can be scaled by the inverse of the
aforementioned norm to allow comparisons across different jet samples, while at the same time
yielding small disturbances only. This leads to an attack which is not easy to predict, both for
the direction of the shift, as well as the magnitude per feature, unlike for FGSM, where only
±ϵ shifts are possible. Introducing the modified attack instead will include correlations between



features, a shortcoming of the FGSM attack typically mentioned in the context of HEP. In
an adversarial training against this new attack, we would not need large distortions, resulting
distorted jet samples will not be easy to detect in validation methods (such as one-dimensional
histograms).

4. Conclusion
In this paper, we presented a study of the loss manifold with respect to input features of a
typical jet tagging algorithm, when trained on nominal or adversarial samples. Differences
with respect to flatness and thus invariance to small distortions are observed, explaining and
confirming previously explored differences in robustness and generalization. With such loss
surfaces at hand, we proposed modified training strategies to explicitly use that newly gained
knowledge of the network’s properties directly during backpropagation. Putting more focus
on regularization and correlations, the proposed methods can bridge the gap between machine
learning-theoretical studies and their application for object identification in particle physics,
where the physical behaviour of observables shall be maintained.
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