Automatic Differentiation of Binned Likelihoods
With Roofit and Clad

Garima Singh”, Jonas Rembser!, Lorenzo Moneta’, David Lange”,
Vassil Vassilev”

* Department of Physics, Princeton University, Princeton, NJ 08544, USA
t EP-SFT, CERN, Espl. des Particules 1, 1211 Meyrin, Switzerland

E-mail: garima.singh@cern.ch, jonas.rembser@cern.ch, lorenzo.moneta@cern.ch,
david.lange@cern.ch, vassil.vassilev@cern.ch

Abstract. Just as data sets from next-generation experiments grow, processing requirements
for physics analysis become more computationally demanding, necessitating performance
optimizations for RooFit. One possibility to speed-up minimization and add stability is the use
of Automatic Differentiation (AD). Unlike for numerical differentiation, the computation cost
scales linearly with the number of parameters, making AD particularly appealing for statistical
models with many parameters. In this paper, we report on one possible way to implement AD
in RooFit. Our approach is to add a facility to generate C++ code for a full RooFit model
automatically. Unlike the original RooF'it model, this generated code is free of virtual function
calls and other RooFit-specific overhead. In particular, this code is then used to produce the
gradient automatically with Clad. Clad is a source transformation AD tool implemented as a
plugin to the clang compiler, which automatically generates the derivative code for input C++
functions. We show results demonstrating the improvements observed when applying this code
generation strategy to HistFactory and other commonly used RooFit models. HistFactory is the
subcomponent of RooFit that implements binned likelihood models with probability densities
based on histogram templates. These models frequently have a very large number of free
parameters and are thus an interesting first target for AD support in RooFit.

1. Introduction

The complexity of analyses of data collected at the Large Hadron Collider is growing
continuously. Cutting-edge statistical analyses such as combined Higgs measurements are usually
executed with the RooFit library [I], a part of the data analysis framework ROOT [2]. In these
studies, one has to minimize likelihoods with thousands of free parameters that spread over
hundreds of likelihood components, each representing a different measurement channel. For the
largest models, the likelihood minimization can take hours to complete [3]. To ensure that this
time doesn’t grow further and hopefully even bring it down to the order of minutes, RooFit’s
performance was significantly improved in the last years. This has included, for example, a
complete rewrite of the likelihood evaluation code to achieve easier vectorization [4].

To iteratively find the minimum of a likelihood, one generally has to know the gradient of the
likelihood with respect to all free parameters. Naively, the gradient can be found numerically
by varying one parameter at a time and reevaluating the full likelihood. However, it is not
necessary to reevaluate the full mathematical expression when only one parameter is changed,

which is why RooFit includes a sophisticated caching mechanism. Individual expressions in the
computation graph or groups thereof are represented by objects that cache their last results.

This caching approach has some performance shortcomings. It requires lots of bookkeeping
(such as keeping track of the parts of the model that need to be recomputed due to a change in
the parameter values) that incurs significant overhead. The representation of the computation
graph in terms of objects with a relatively large memory footprint that evaluates each other
using virtual calls is also not ideal for performance. Furthermore, there are still some redundant
computations because a single RooFit object often groups many mathematical operations
together. In other words, for some subgraphs of the computation graph, we fall back to the
fully redundant reevaluation.

Deviating from this caching paradigm, we believe that all these performance penalties can be
alleviated by better analyzing the full expression graph for the likelihood at the most granular
level to automatically generate an overhead-free representation for the full gradient without
redundant computations. This is a job that can be done by the compiler. For this paper, we
generated the gradient for binned HistFactory-style likelihoods [5] with Clad [6], a compiler-
based source code transformation AD tool.

2. Background
2.1. Numerical Differentiation
Numerical differentiation aims to estimate the derivative of a mathematical function, specifically
using the values of the function or other meta-information. It is widely used in popular
mathematical software and libraries, including RooFit, where it serves as the main source of
derivative calculation through the minimization library - MINUIT [7].

Numerical differentiation can be implemented through many different techniques, one of the
most notable being Newton’s method of finite difference. Here, the derivative of a real-valued
multi-argument function f(zg, 1, ..., z,) with respect to the input x; can be written as follows:

0f(x0s @1, s) _ fl@os oy @i+ hy oy) = f@o, oy i — hy oy))

The method of finite differences relies on introducing a small perturbation A to the function
and measuring its impact on the result of the function. This small perturbation is usually
referred to as the step size. The smaller the step size, the more accurate the derivative estimate.
In theory, the step size should be a very small value; however, due to the nature of floating-point
arithmetic, division by small floating-point values can lead to high numerical error in the result.
This leads to a fairly difficult optimization problem for calculating the value of h, as too small
a value will lead to high numerical error, but too large a value will lead to worse estimates of
the derivative. Moreover, this choice also depends on the problem being solved, meaning that
there is no single value of h that is suitable for all use cases. As such, choosing the right step
size while maintaining the accuracy of the derivative becomes very challenging.

Another aspect where numerical differentiation falters is performance. For example, in
equation 1, the full derivative with respect to all inputs of the function f is calculated one
at a time. This means that since each derivative calculation takes at least 2 calls (even higher
for other more accurate methods), a function with n parameters will require at least 2 * n
function calls to f to generate a full derivative. As such, these methods tend to scale very
poorly when applied to problems with many parameters. However, one advantage of using
numerical differentiation is the fact that minimal effort is needed to support complex functions
and parameters. As shown in equation 1, most numerical differentiation techniques are fairly
implementation agnostic, meaning they can handle arbitrarily complex function implementations
as long as the interface of the function follows the one dictated by the numerical differentiation
algorithm. For some uses, this advantage can trump some of the previously stated problems.

RooFit uses numerical differentiation for this exact reason; it is fairly simple to implement
even for complex codebases. As for the other disadvantages, RooFit combats them by using
sophisticated caching mechanisms and other numerical logic that reduces the final error in
the derivative while still keeping the performance satisfactory. These modifications have led
to RooFit possessing an efficient numerical differentiation pipeline that can handle large-scale
analysis effectively at the cost of making the codebase very complex, hindering the maintenance
and development of new features.

2.2. Automatic Differentiation and Clad
Automatic Differentiation (AD) is a set of techniques to evaluate the exact derivative of a
computer program. Unlike numerical differentiation, AD can produce true derivatives rather
than estimates. It uses the chain rule of differentiation over a function’s computation graph to
differentiate it.

AD majorly defines two types of recursive relationships to calculate the derivative of a function
f w.r.t. an input x - forward accumulation and reverse accumulation. For an arbitrarily complex
function y = f(g(x)) that can be split into intermediate steps as follows:

wo =z w =g(xr) w2= f(g(x)) =y (2)

The forward and reverse accumulation modes are defined as in equation 3| Note that both
methods intend to calculate the partial derivative of f w.r.t. an arbitrary input x; they only
differ in how the intermediate derivatives are accumulated.

8wi . 8w,~ * 8wz~_1 and 8y 8y a’wi_H

ox N 8wi_1 ox 81!)1' - 8w,~+1 * 8wi (3)

As described above, the forward accumulation mode calculates the derivative of each sub-
expression in a function with respect to a fixed input (much like numerical differentiation),
whereas the reverse accumulation mode calculates the derivative of the output w.r.t. to each
sub-expression. This quality of the reverse mode makes it an ideal choice for when the function
needs to be differentiated w.r.t. to a large number of parameters, as it entails lesser work than the
forward accumulation mode. For this reason, we primarily use the reverse accumulation mode (or
reverse mode) in our work. Specifically, we use Clad [6], a source-code-transformation AD tool
built as a plugin for the C/C++ Clang compiler based on the LLVM compiler infrastructure [8].
Clad works at the compiler level to inspect the source code of a target function and generates
another function that calculates its derivative. Figure[I|demonstrates what an example function
and its derivative look like when differentiated with Clad. Clad is especially easy to use for HEP
tools as it is available in ROOT through Cling [9], the C++ interpreter for ROOT.

While AD has clear advantages of efficiency over numerical differentiation, one caveat it
has is its limited support for code with side effects (such as classes and other object-oriented
programming constructs). In a lot of cases, these constructs can hide the vital differentiable
information that AD needs to generate correct derivatives. While this ’hiding’ is intentional to
make the target application easy to use, it becomes a hindrance for AD tools. This makes AD
particularly difficult to integrate into RooFit, where classes and object-oriented programming
are important design elements.

double RooGaussian::gauss (double x, double mu, double sig)

— Caching &
Bookkeeping 1
RooGaussian: :evaluate() ——————————+ °onst double arg = x - mu;
Normalization double out = std::exp(-0.5 * arg * arg / (sig * siqg)):

return 1. / (std::sqrt(TMath::TwoPi()) * sigma) * out;
}

Figure 2: An example showing how a RooFit class can be transformed to expose its differential
properties.

double absFunc darg0(double x) {

clad: :differentiate (absFunc) double d x = 1;
o if (x < 0) return - d x;

double absFunc (double x) {

if (x < 0) return -x;

else return x;

}

else return d x;

Figure 1: An example function being differentiated by Clad.

3. Design and Implementation

As the previous sections discussed, RooFit’s object-oriented design makes it hard to directly use
an AD tool to differentiate the statistical models. We need to introduce an intermediary step or
transformation that can make these models more amenable to AD. Using a tool like Clad, this
means generating state-independent code that exposes the differentiable properties of a RooFit
model in a way that Clad can understand.

The first step in building such a transformation is exposing the relevant differential properties
of the RooFit classes. We can accomplish it by introducing a static function that translates the
mathematical meaning of the class into code. Fig. [2| shows how the RooGaussian: :evaluate ()
can be transformed to create a function that can be differentiated by Clad.

Now that we can transform each class independently, we need to combine all of these
transformations from the statistical model into a single piece of code that can later be
differentiated by Clad. While it is possible to combine the independent derivatives from each of
the nodes/classes in a model to get the derivative of the full model, it usually is not as efficient.
One big advantage of first combining the code and then generating the derivative is that the
compiler has better opportunities to perform compiler optimizations on both the combined code
and generated derivative. Moreover, this approach of combine-and-differentiate also leads to a
better debugging experience as the cause of errors in the derivative can be attributed directly to
a line of stateless code rather than a deep stack trace of member functions. For these reasons,
in this work, we use the combine-and-differentiate approach.

One way to implement the combine-and-differentiate (or code-squashing) approach is by
introducing a ”translate” function for each of the classes. This "translate” function returns an
std: :string representing the underlying mathematical notation of the class as code that can
later be concatenated into a single string representing the entire model.

Moreover, it also contains some extra logic to correctly propagate the required information
(such as inputs to other nodes, side effects of the current node on the other nodes, etc.) to the
children nodes. An example of a translate function for the RooGaussian class is given in fig. [3]

To retain the control flow, a depth-first search is performed on the model, and translate
is called on each of the nodes being visited. Once the search is complete, the generated code
is just-in-time compiled using Cling, the C++ interpreter for ROOT. Fig. [4] describes how an
example RooFit model can be translated into code and then differentiated by Clad.

‘translate’ builds a call to the simplified 'getResult' queries the child nodes for

‘evaluate’ of the RooFit class. information, allows for result propagation.
std::string RooGaussian::translate(...) override {
result = "RooGaussian::gauss(" + _x->getResult() +

" ," + _mu->getResult() +
" ," + _sigma->getResult() +
"y

Figure 3: An example ”translate” function for RooGaussian.

code += // Declare the code

RooNLLVar: :Translate() ; gInterpreter->Declare (code.c_str());
// Get the derivatives of ‘code’
— gInterpreter->ProcessLine("clad: igradient(code) ;")
code 4= // Use code_grad in wrappers that interface with

the minimizer.
* RooGaussian: :Translate ({}); //

~

Figure 4: Code generation and differentiation for an example RooFit model.

4. Results
We tested our work with an example based on the HistFactory template [5]. The negative
log-likelihood function looks as follows:

l= Z pois(ni|a - v;) + laux- (4)

Here, pois(n;|a - v;) (in equation [4]) denotes the negative logarithm of a Poisson distribution
with the expected value « - v; at the observed value n; in the bin i. The expected value is
the product of a global luminosity scaling constant « and the sum of three scaled template
histograms S, By and Bs, standing for one signal sample and two background samples:

vi = puS; + 1, B1i + 71,282 (5)

The scaling factor u (in equation [5]) for the signal is independent of the bin, and the v-factors
are independent for each bin and background. The parameter « is constrained by a Gaussian
distribution, while each ~ is constrained by a Poisson distribution. All these constraints are
included in the auxiliary likelihood l,,x. This is typical for measuring a predicted signal on top
of data-driven background estimates. For our study, we varied the number of parameters in the
model by varying the number of bins.

Fig [p| shows the performance comparison of the minimization of the model defined in
equation (4| for different evaluation configurations. We compared the combined code (or
code-squashing) approach using AD and numerical differentiation with the regular RooFit
configuration for a varied number of parameters. We obtain a speedup of 5.5x for the
minimization with around 1,000 parameters.

5. Conclusion and Future Work

This work has shown that RooFit’s minimization performance can be significantly improved by
generating an optimized callable for the analytic gradient instead of using numeric differentiation
with caching in an attempt to avoid redundant computations. The future work will aim to
implement this logic upstream in ROOT such that it can be used for general RooFit models.
To this end, future work is needed in three areas. The first area is the implementation of a code

2 500k

2 000k

1 500k

Time (us)

1 000k

Code Squashing - Numeric Differentiation

00k

0 e
12 112 212 312 412 512 612 712 812 912
Number of Parameters

RooFit - Numeric Differentiation -#= Code Squashing - Numeric Differentiation Code Squashing - AD

Figure 5: Performance comparison AD vs numerical differentiation on a HistFactory template
(defined in equation .

generation engine that can take any RooFit likelihood and produce a simple C++ function from
it that can be digested with Clad. The second area is to improve the interface between RooFit
and the minimizer algorithms shipped with ROOT, as the many (often unnecessary) abstraction
layers make passing around the analytic gradient very complicated. The third area is to work
on the minimization algorithms themselves. Having a callable representation for the first and
potentially also second-order derivatives of the likelihood that are cheaper to evaluate than the
numeric approximations makes it necessary to revisit the minimization strategies in order to
maximally benefit from the analytic gradients and Hessians.

6. Acknowledgements
This project is supported by the National Science Foundation under Grant OAC-1931408 and
under Cooperative Agreement OAC-1836650.

7. References

[1] W. Verkerke and D. P. Kirkby, “The RooFit toolkit for data modeling,” eConf, vol. C0303241, p. MOLT007,
2003.

[2] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev, S. Linev, D. Piparo,
G. GANIS, B. Bellenot, E. Guiraud, G. Amadio, wverkerke, P. Mato, TimurP, M. Tadel, wlav,
E. Tejedor, J. Blomer, A. Gheata, S. Hageboeck, S. Roiser, marsupial, S. Wunsch, O. Shadura, A. Bose,
CristinaCristescu, X. Valls, and R. Isemann, “root-project/root: v6.18/02,” Aug. 2019. [Online|. Available:
https://doi.org/10.5281 /zenodo.3895860

[3] C.Burgard, J. Rembser, L. Moneta, P. Bos, W. Verkerke, and Z. Wolffs, “New RooFit developments to speed
up your analysis,” 2022. [Online]. Available: https://agenda.infn.it/event/28874/contributions/169205/

[4] E. Michalainas, J. Rembser, S. Hageboeck, and L. Moneta, “Acceleration with GPUs and other RooFit news,”
J. Phys. Conf. Ser., vol. 2438, no. 1, p. 012066, 2023.

[5] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, “HistFactory: A tool for creating statistical
models for use with RooFit and RooStats,” New York U., New York, Tech. Rep., 2012. [Online]. Available:
https://cds.cern.ch/record /1456844

[6] V. Vassilev, M. Vassilev, A. Penev, L. Moneta, and V. Ilieva, “Clad — Automatic Differentiation Using
Clang and LLVM,” vol. 608, no. 1. IOP Publishing, may 2015, p. 012055. [Online]. Available:
https://iopscience.iop.org/article/10.1088 /1742-6596 /608 /1/012055 /pdf

[7] F. James and M. Roos, “Minuit: A System for Function Minimization and Analysis of the Parameter Errors
and Correlations,” Comput. Phys. Commun., vol. 10, pp. 343-367, 1975.

https://doi.org/10.5281/zenodo.3895860
https://agenda.infn.it/event/28874/contributions/169205/
https://cds.cern.ch/record/1456844
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012055/pdf

[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis and transformation,”
San Jose, CA, USA, Mar 2004, pp. 75-88.

[9] V. Vassilev, P. Canal, A. Naumann, L. Moneta, and P. Russo, “Cling — the new interactive interpreter for
ROOT 6.”

