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Abstract. In order to tackle the amount of data that is expected to be produced in the high
luminosity era of the Large Hadron Collider (LHC) and future experiments, the rate at which
charged particle tracks can be reconstructed must increase significantly. Massively parallel
GPGPU architectures are promising candidates to fulfil this requirement. Current state-of-the-
art reconstruction software is highly optimized for deployment on CPU architectures and, in
many cases, cannot be used on hardware accelerators without undergoing extensive adaptations
or a reduction of the problem scope. The ACTS community currently hosts multiple R&D
projects investigating the implementation of a complete track reconstruction chain demonstrator
that runs on CPU and GPU devices. One of these projects is detray, which provides a GPU-
friendly detector geometry description and track state propagation, including material effects.
It uses the vecmem library for memory management and the covfie library for a detailed
magnetic field map. Within detray, track parameters and their associated covariances can be
propagated through a detector geometry with a magnetic field by applying an adaptive Runge–
Kutta–Nyström algorithm. It uses a single-source implementation that has been shown to run
on the host, as well as on a GPU device using CUDA.

1. Track reconstruction in the ACTS R&D project
A Common Tracking Software (ACTS) [1, 2, 3] provides a toolkit of algorithms for track
reconstruction that are written in modern C++, encompassing all steps of the tracking chain,
from hit clustering to track fitting. An accurate track reconstruction depends on an exact
description of the detector geometry, which is provided by the ACTS tracking geometry. The
tracking geometry grants access to the precise positioning and shape of the sensitive and passive
detector elements, while at the same time reducing complexity to save computing resources. The
detailed structures of a detector geometry are abstracted to simpler detector element surfaces
for a fast navigation onto which an averaged material is mapped. ACTS can build a tracking
geometry from various sources via dedicated geometry plugins, like the ROOT Geometry Package
(TGeo) [4] and DD4hep [5].



Relying on e.g. a polymorphic geometry description and a vector-of-vector data layout has
made the adoption of ACTS tracking algorithms on hardware accelerators difficult. Furthermore,
some C++ Standard Library functionality is not available when working with backends like
CUDA [6] or SYCL [7]. In a dedicated study, several R&D projects were launched to investigate
the adaptation of the ACTS track reconstruction pipeline to device [8, 9, 10, 11, 12, 13]. The
algorithmic code, i.e. clustering, seeding, track finding and fitting, is part of the traccc project.
The detray project provides the tracking geometry and track state propagation. The magnetic
field description that is needed in detray is implemented using the covfie library. Last but
not least, the vecmem and algebra-plugins projects supply memory management and linear
algebra functionality to the other projects.

2. The detray Project - Overview
The detray project provides a header-only library that contains a geometry description capable
of modelling an ACTS tracking geometry to full detail. A track state parametrization can be
propagated in a magnetic field through the tracking geometry together with its covariance,
including material effects. The detray codebase is fully heterogeneous, so that any class can
be instantiated and used in both host and device code. In the current propagation model, where
threads are directly matched onto tracks, the entire propagation loop can thus be expressed in
a single kernel of less than 100 lines of code.

The library comes with many native geometric shapes, for example, rectangles, cylinders or
discs. These types are fully compile-time polymorphic and are managed in tuple-of-vector based
containers with visitor functionality, i.e. a given callable is checked against every tuple entry
using a type identifier index. Custom shapes can be added by re-compiling the central detector
object. The detector holds the tracking geometry as well as the magnetic field data and performs
the data movement to device if required. The underlying data structure of the detector is based
on container indices and does not make use of pointers. A given detector is therefore relocatable
in memory.

The memory management of the vector-like data in the detector is handled by the vecmem
library. All constructors are allocator-aware and take a polymorphic memory resource that
determines the allocation scheme, see [11] for more information. Furthermore, all classes are
templated on the container types, so that e.g. the std::vector based host-side container can be
switched against the vecmem::device vector type in kernel code. To construct the non-owning
device-side detector, a view is generated from the host instance and passed to the kernel. This
view is given to the corresponding constructor of the device-side detector, which unpacks it and
hands the sub-views of its data members to their respective constructors until the full type is
assembled. Afterwards, the new device-side detector instance can be used in the same way as
host-side.

3. Tracking Geometry Implementation
The geometry description in detray follows the ACTS tracking geometry model, which is
surface based and describes volumes as an aggregation of boundary surfaces. To avoid virtual
function calls in detray, the shapes of the surface primitives have been implemented as
lightweight data structures that define all properties needed to characterize a particular local
geometry. They contain shape specific type definitions and methods, such as e.g. the local
coordinate system, the type of intersection algorithm to be used with the shape, as well as the
number of boundary values and the respective boundary check method. The coordinate system
transformations and intersection algorithms are implemented as separate functions so that they
can be re-used between shapes. For example, a rectangle2D shape will have two half lengths
as boundaries in a two dimensional local Cartesian coordinate system and will use a line-plane
intersection algorithm.



Figure 1. A mask of rectangular (left) and ring (right) shape. The boundary values are defined
in the respective local coordinate system.

The shape types can be given as a template argument to any class that exhibits a geometrical
shape, which can then adopt the relevant definitions and methods. This allows for an easy
extension of detray with new shapes while avoiding inheritance. An important example are
the surface masks, which define the extent of a surface primitive of a given shape in its local
coordinate system and thus hold all shape related data of a surface instance, see Figure 1. Other
examples are the building of the grid data structures or, in future, the bounding volume class.

Since the mask corresponding to each distinct surface primitive is of a different type and
cannot be referenced by a polymorphic base class pointer, the detector needs to hold them in
separate vector containers which are bundled in a tuple. Calling shape specific behaviour of
a surface then commences through functions that are given to a visitor method of the mask
tuple container. The same container pattern is applied for the surface material since there are
currently two types of material available, which abstract the detailed distribution of material
in the tracking geometry from the full geometry description. These are homogeneous slabs or
rods (depending on the surface shape) of material of a given thickness, radiation and interaction
length. The material description itself is configurable in many material specific parameters, such
as e.g. atomic number or molar density. A number of predefined materials are available, which
can additionally be composed into material mixtures.

Surfaces are placed in the detector space by affine transformations, which are kept in a
transform store container as part of the detector. The primary responsibility of the transform
store will be to identify the correct transform for a given surface and geometric context, so that
alignment conditions data can be handled in a thread-safe way. Considering the transform store
design in conjunction with the combinatorics of different shape and material types, the surface
class in detray has been reduced to a descriptor structure that merely keeps the type identifiers
and indices of the surface components in the detector (tuple -) data stores. These surface
descriptors are lightweight and are designed to allow for a straightforward implementation of
surface instancing.

4. Navigation model
In detray, volumes primarily subdivide the detector into navigation domains. Every volume is
described by its boundary surfaces, called portals, and provides an access method to the sensitive
and passive surfaces that it contains. The portal surfaces link a volume to its neighbours by
referencing a number of masks, each of which standing for a shared boundary surface. Non-portal
surfaces always link back to their mother volume. Empty gap volumes are placed in between
the sensor layer volumes, so that the navigation flow can be described as moving through a
succession of volumes via the portal links. Within a given volume, the surfaces will be provided
by an acceleration data structure, which is defined by every volume individually and performs a
neighborhood lookup around the track state position to reduce the navigation to nearby surfaces.



The navigator class is built around a surface candidate cache which is filled by ray intersection
from the surfaces returned by the volume accelerator data structure. The assumption is, that on
a small scale the track is straight enough to be approximated by a tangential ray. The benefit of
this approach is that ray-surface intersections are well studied and efficient to compute. Given
the distance to the closest surface candidate, the magnetic field integration can commence in
the next step to advance the track state position.

The navigator exposes a number of methods to the propagation that update the candidate
cache in different ways in an effort to minimize the amount of intersections and sorting that
needs to be done in a given propagation step. These methods are governed by a trust level flag
which can be set by the other participants in the propagation in case (re-)navigation is required:

• Full Trust: The track state has not changed since the last call to the navigator, therefore
do nothing.

• High Trust: Only update the distance to the current next candidate surface. This assumes
that the candidates and their sorting in the cache are still consistent with the track state.

• Fair Trust: Update all candidates and resort the cache. This assumes that the track state
has not moved out of the current local neighbourhood of surfaces, yet.

• No Trust: (Re -)initialize the navigation in a given volume. Also called during a navigation
volume switch.

5. Field Integration
The track state parametrization contains eight values (x, y, z, t, dx, dy, dz, q/p), with d the
normalized track direction, if described in the global detector frame and six values
(loc0, loc1, φ, θ, q/p, t) when expressed in the local coordinate system of a surface. In order to
advance the track state through the detector, the equation of motion of a moving charged particle
in the detector’s magnetic field has to be solved. Since, in general, the field is inhomogeneous, no
closed algebraic solution for the particle trajectory exists. In this case, the field integration has to
be done numerically. In lockstep with the track position, the track parameter covariance matrix
is updated in order to transport the covariances from their initial estimate at the beginning
of the track propagation to their values at the final surface, see e.g. [17]. This is done by
transforming the initial covariance matrix with a Jacobian that represents the full parameter
error propagation. In particular, during the field integration step, this means that the Jacobian
corresponding to the field integration needs to be calculated.

Advancing the track state position and updating the corresponding transport Jacobian are the
tasks of the stepper class, which is called after the navigator during the propagation. It applies a
fourth order Runge–Kutta–Nyström (RKN) algorithm with an adaptive step size [18, 19, 20] to
ensure a sufficiently low integration error. The maximal path length in a given step is determined
by the navigator as the straight-line distance to the next surface on the trajectory. Consequently,
the adaptive RKN algorithm is allowed to only reduce the step size by running the step size
adjustment uniquely when the integration error exceeds a given tolerance, in which case the step
size scale factor is guaranteed to remain smaller than one. This results in a greedy stepping
algorithm that does not need to (re -) check the navigation step size constraint.

The magnetic field vector at the sampling positions of the RKN algorithm are provided by
the covfie library. Currently available in detray is a homogeneous magnetic field, which is
mainly used for testing and validation. A magnetic field map that is read from file and uses
e.g. a nearest neighbour interpolation to get a precise field vector at an arbitrary position is
about to be added as well.



6. Track State Propagation
Both stepper and navigator are called inside the propagation loop, which is run by the propagator
class until the track state either leaves the detector world space or one of a number of predefined
termination criteria is reached. The propagator can in principle be equipped with different
stepper and navigator implementations, depending on the problem setting, as well as a variable
number of so-called actors. Actors are a concept that has been adopted from ACTS and are used
to extend the propagator with various functionality, such as the aforementioned abort criteria.
The actor chain is assembled at compile-time by giving each actor type as template parameter
to the chain. The actor states are strapped into a tuple of references from which each individual
state is retrieved when an actor is called. Actors may observe other actors and will thus be
handed the subject’s state in addition to its own on every call. Furthermore, an observing
actor can itself be subject to other observing actors, resulting in a compile-time, depth-first call
tree of propagation actions. The actor mechanism allows for an extendable and highly flexible
expression of the propagation loop.

For example, the transport of the track state covariance matrix [17] is handled by a dedicated
actor. Starting from a track state that is bound to a surface, it will determine the Jacobian
to transform the covariance to the global detector coordinate frame, then add the transport
Jacobian obtained from the stepper and, following that, the Jacobian for the local coordinate
transformation of the next surfaces is calculated. This process is repeated until the final, full
Jacobian for the track can be assembled. In between, whenever the track is propagated to a
surface, the covariance matrix needs an additional update with respect to the surface material.
This is handled by thematerial interactor, which adds terms corresponding to multiple scattering
and energy loss effects according to Bethe-Bloch. Other examples for actors are the path limit
aborter, which prevents infinite propagation, the random scatterer used in the simulation or, in
future, the Kalman Filter that is due to be added in traccc.

7. Summary and Outlook
In the detray testbed detector environment, which is based on the pixel component of the
ACTS generic detector [21], track parameter and error propagation was demonstrated in a single-
source codebase. The propagation model follows the ACTS design, using a tracking geometry
based navigation, an adaptive fourth order Runge-Kutta-Nyström algorithm to perform the field
integration, as well as a propagation loop including compile-time pluggable actors.

The code has been tested using a homogeneous magnetic field on a CPU and a CUDA backend.
In a very preliminary benchmark of the full propagation loop with 50 repetitions, see Figure 2,
the performance was competitive between the multithreaded host and the device when running
a large number of tracks. While the device propagation performance is virtually identical for
the Eigen3 and custom std::array-based linear algebra implementations, and might hence be
dominated by other effects, the difference in the host-side propagation performance between the
two is not currently understood.

Though there is no clear gain visible for the device-side over the host-side propagation, yet,
the current implementation comes with a number of caveats. For example, all data are held
in CUDA unified memory, geometry acceleration data structures and detector-based memory
optimization, like surface instancing or sorting, are not yet deployed and impacts from thread
divergence are expected on the device-side as well. In the current parallelization model, one
track is assigned per thread in both the host and device implementation and propagated to the
end by the same thread. This model is straightforward to implement in a single-source code
design, but also likely results in thread divergence when e.g. one track encounters a surface and
needs to execute special code, e.g. the covariance updates, while all other tracks are still running
the field integration step. The benchmarks are consequently under further investigation.
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Figure 2. Benchmarks of the full propagation loop in single precision on an AMD EPYC 7413
24-Core (48 threads, using openMP [22]) host processor and an NVIDIA RTX A5000 device for
two linear algebra implementations [13].

Work is on-going to read ACTS tracking geometries into detray, thus allowing to use existing
detector descriptions in detray without further adaptation. This also includes geometry
acceleration data structures and more detailed material mapping, neither of which are deployed
in detray, yet. A detailed physics validation and performance benchmarking study will follow.
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