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Abstract. We have developed and implemented a machine learning-based system to calibrate
and control the GlueX Central Drift Chamber at Jefferson Lab, VA, in near real-time. The
system monitors environmental and experimental conditions during data taking and uses those
as inputs to a Gaussian process (GP) with learned prior. The GP predicts calibration constants
in order to recommend a high voltage (HV) setting for the detector that maintains consistent
detector performance (gain and resolution) throughout data taking. This approach is in stark
contrast to traditional detector operations in which the detector operates at fixed HV and
its calibration parameters vary quite considerably with time. Additionally, the ML-based
system utilizes uncertainty quantification to correct the recommended control parameters when
appropriate. We will present results from the ML system running autonomously during the
Charged Pion Polarizability (CPP) experiment conducted in Hall D at Jefferson Lab.

1. Introduction
The GlueX experiment is housed in Jefferson Lab’s newest experimental hall, Hall D, and is
designed to search for exotic hybrid mesons via photoproduction[1]. The GlueX spectrometer is
comprised of several tracking detectors and calorimeters, including the Central Drift Chamber
(CDC) [2], which is a gas-filled tracking detector for charged particles.

Data gathered from the detector must be calibrated in order to be useful in subsequent
physics research. The CDC has two calibrations: a gain correction factor (GCF) and a drift
time calibration. This work focuses on the GCF, which has a variation of ±15%. The CDC has
only one control: the operating voltage of the detector.

Traditionally the CDC is operated at a fixed high voltage (2125 V) with calibration performed
on the data as a post-processing step. The calibration process is iterative, computationally
expensive, and occurs after data taking; delaying subsequent physics analysis. With artificial
intelligent systems, the high voltage (HV) of the CDC could be changed as needed to stabilize
the GCF of the CDC thus eliminating the need for such expensive calibrations. This is the main
motivation for the research presented.

1.1. Can we predict GCFs?
Before we can enact controls for the CDC, we need to accurately predict the GCFs using the
conditions in which the detector is operated. By accurately predicting the GCF and knowing



the relationship between HV and gain we can, in principle, adjust the HV to counteract changes
in GCF. To begin the process of predicting the GCF our detector expert identified variables
likely to influence the detector’s GCF.

After initial analysis 3 variables were chosen as having the largest impact on CDC GCF. The
variables are: the atmospheric pressure, the temperature of the Ar:CO2 gas mixture which fills
the CDC, and the current drawn from the CDC HV boards (a proxy for charged particle flux). It
is encouraging that these variables appeared to have the highest correlation as they agreed with
literature of drift chamber design and operation[3]. During data taking, the input features are
readily available from the Experimental Physics Industrial Controls System (EPICS), are not
dependent on other detectors, and do not require event reconstruction (a slow, computationally
intensive process not feasible for use in a real-time environment).

After initial studies and testing, a Gaussian Process (GP) was selected as the machine learning
(ML) technique to best accomplish the goal of predicting CDC GCFs. A GP with a single output
parameter infers a latent function Rp → R, to map training input X and corresponding targets
y [4]. X is the matrix of N observations of the selected features, xn ∈ Rp, and n is the nth

observation and p is the number of features, in our case three. The mapping uses a selected
covariance function, k(x, x′), to control the smoothness of the mapping output from one training
point to the next closest training point [5]. In our case, k(·, ·) is a sum kernel of Scikit-learn’s
[6] Radial Basis Function (RBF), as shown in Eq. 1, and White Noise (WN), as shown in Eq.
2. The RBF explains the covariance of the data, where l is the learned length scale parameter
used to scale the difference in distance between training observations.

kRBF (x, x
′) = exp

(
−(x− x′)2

2l2

)
(1)

The WN is used to describe the combined global noise in the data, where σ2 is the variance
of the noise, and In is the identity matrix.

kWN (x, x′) = σ2In, (2)

The GP for this application implements the 3 variables listed above as input features with
exactly one target value: the GCF of the CDC. Two GPs, one with an Isotropic Radial Basis
Function plus white noise and the other with an Anisotropic Radial Basis Function plus white
noise, performed well below our goal of a 5% error in predicting the GCF, thus the GP with
Isotropic Radial Basis Function was used.

There is a known relationship between GCFs and the operational HV of the CDC, as shown
in Figure 1. This relationship can be exploited to recommend a HV setting based on relative
signal peak amplitudes, which is influenced by gain.

1.2. Can we control HV to stabilize gain?
On its own the model cannot control the CDC. For that a modular system was developed to
gather the needed input variables, feed them into the model, receive the results of inference,
convert that inference to a CDC HV setting, and finally, control the CDC. A diagram of the
modular system is given in Figure 2.

The system is configurable to allow different modes of operation, from continual operation
with fine-grained controls to running on-demand. All system behavior, including hot-swappable
models, are configurable on-the fly. The Control System, System Configuration, and model
components comprise the core capabilities. The Control System is responsible for interacting
with the CDC’s HV controls, i.e. translating model recommendations into action. The remaining
components provide the model inputs, log system behavior, and provide monitoring capabilities.



Figure 1. The CDC HV setting versus the relative peak amplitude at a given HV to that at
the standard HV setting of 2125V. This relationship is exploited to recommend a HV setting
for the CDC given a predicted GCF, which is related directly to the signal peak amplitudes.

Figure 2. A schematic of the AI based control system showing the model utilities as circuits,
the overall system configuration as a cog, and the control system as a cube which takes in values
from EPICS and performs control operations while maintaining a comprehensive log of actions.

To aid in ease of running inference with a given model, the model and other necessary
parameters are co-located such that only a reference to Tensorflow’s Proto-buffer file is needed.
The main system utilizes a model utility script which finds and collects the needed files and
prepares the model for inference. The system then queries EPICS, performs the necessary
preprocessing, and forms a dictionary of input features to be fed to the model via its utility
function. The system receives an output dictionary from the model utilities which it then uses
to decide how the CDC should be controlled. Should the system decide that the CDC HV should
be modified, it passes the settings to another utility which interacts with the controls system
and changes the CDC HV.

Before any experimental data was taken, the CDC was divided via software into roughly equal
”left” and ”right” sides in order to test the ability of the control system to stabilize the gain.
Cosmic ray data were then taken with one side operating at a fixed 2130 V and the other side
controlled by the AI control system, which updated the HV setting of the CDC every 5 minutes.



Figure 3. Results of controlling half of the CDC using the AI control system (blue squares)
compared to a fixed CDC HV (orange circles) over the Cosmic Ray test (about 2 weeks). This
shows an almost order of magnitude decrease in GCF variation when using the AI control system.

During the roughly two weeks of data taking, the system performed as expected, autonomously.
After completion of data taking, the GCFs for the two sides were computed. The results can be
found in Figure 3. The side controlled by AI is clearly seen to have provided much more stable
GCFs (∼3% variation) than the side held at a fixed HV, which saw an almost 30% variation
over the same time period.

2. Trust and Uncertainty Quantification: Does the system generalize to Other
Running Conditions?
One clear advantage of using a Gaussian Process is the inherent uncertainty quantification
(UQ) it provides. Any system trusted with the operation of a sophisticated tracking
detector must be trustworthy. This UQ is an indication of the model’s confidence in its
prediction/recommendations, how similar the current operational environment is to the data
the model was trained with. Typically, naive models will revert to their means when they
get far enough outside of their training regime. There are methods, which were employed
here, to help aid the transition from operational regions covered by training data to those not
covered, but still there remain cases where the CDC will operate outside of regions of model
confidence. To alleviate this concern, a confidence threshold was selected and a corresponding
surface in input feature space was established. This surface is dependent on the selection of a
threshold; examples of how the surface varies with differing thresholds can be seen in Figure 2.
An uncertainty threshold of 3% was determined to provide the correct balance model coverage
in feature space and GCF resolution. Thus the result of inference can either exist inside the
volume contained by the surface or exist outside of the surface. Each class of inference results
is then independently handled. For inside results, the predicted GCFs are used to derive the
recommended HV setting. Outside results are subjected to a UQ correction protocol. For the
results presented here, this protocol projects the 3-dimensional input point (input pressure,
input temperature, input high voltage board current) onto the surface. This corrected point
then became the basis for the inference of the GCF, which in turn was used to compute a
recommended HV setting.

2.1. Charged Pion Polarizability Tests
The above UQ correction was exercised during the Charged Pion Polarizability (CPP)
experiment which ran with a substantially lower luminosity than GlueX, the experiment whose
data was used to train the model used by the system. This is well evident in Figure 5 which
shows the vast majority of data taken was taken outside of the confidence surface. Additionally,
HV control was only done once at the start of each run (a roughly 2hr block of data taking)
due to other constraints present in data taking. Even with this being true, and a widely varying



Figure 4. Images showing the confidence surface for a threshold of 0.01 (left) and the chosen
threshold of 0.03 (right).

Figure 5. A plot of prediction standard deviation versus time for the CPP program (about
two months). A point in the top red shaded area indicates a point outside of the confidence
threshold surface which caused the UQ correction protocol to be invoked.

atmospheric pressure (see fig. 6 ), the AI system was able to robustly operate outside of the
training region, providing a stabilized GCF.

3. Conclusion
To accomplish this, a control system was developed which integrates the already present EPICS
and a Gaussian process to accurately control the GlueX CDC in near real-time. The system
takes a prediction for the GCF and exploits a known relationship between GCF and HV setting
to counteract changes in GCF with changes in CDC HV settings. The system is uncertainty
aware enabling it to robustly control the CDC in the face of novel operational conditions. Thus
far the system has been successfully deployed in cosmic ray testing, where it demonstrated
almost an order of magnitude decrease in GCF variation, and in the CPP experiment where it
likewise stabilized the GCF. With these successes, the AI control system has become part of the
standard operation of the CDC, and its continued development has made it more flexible and
robust in operation.



Figure 6. Plots showing GCF stabilization during the CPP experiment. The top plot shows the
predicted GCF along with the desired 5% bounding box. The bottom plot shows the atmospheric
pressure (the biggest driver of GCF) over the same period of time.
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