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Abstract. The Jiangmen Underground Neutrino Observation (JUNO) experiment is designed
to measure the neutrino mass order (NMO) using a 20-kton liquid scintillator detector to
solve one of the biggest remaining puzzles in neutrino physics. Regarding the sensitivity
of JUNO’s NMO measurement, besides the precise measurement of reactor neutrinos, the
independent measurement of the atmospheric neutrino oscillation has great potential to enhance
the sensitivity in the combined analysis. This heavily relies on the event reconstruction
performance at high energy (GeV) level, including the angular resolution of the incident
neutrino, the energy resolution, as well as the accuracy of the flavor identification etc. In this
contribution, we present a multi-purposed reconstruction algorithm for high energy particles
in JUNO based on machine learning method. This includes extracting effective features from
tens of thousands of PMT waveforms, as well as the development of two types of machine
learning models (spherical GNN and planar CNN/Transformer). Novel techniques, such as
improving the model convergence speed and eliminating reconstruction bias by maintaining the
rotation-invariance are also discussed. Preliminary results based on JUNO simulation present
reconstruction precision at an unprecedented level, showing great application potential for other
large liquid scintillator detectors as well.

1. Introduction
The Jiangmen Underground Neutrino Observation (JUNO) [1, 2] is a multipurpose experiment
designed to determine the neutrino mass order (NMO) and to measure several neutrino
oscillation parameters precisely. Figure 1 shows the central detector of JUNO, which is a 20
kton liquid scintillator (LS) detector equipped with about 18,000 20 inch PMTs and 25,000 3
inch PMTs distributed on the sphere, placed about 700 meters underground.

The sensitivity of JUNO’s NMO measurement mainly comes from the detection of reactor
neutrinos from the Yangjiang and Taishan Nuclear Power Plants, located at 53 km away from
JUNO. However, the measurement of the atmospheric neutrino oscillation could greatly boost
the NMO sensitivity in a joint analysis. This requires precise reconstruction of the GeV level
atmospheric neutrino events in the JUNO detector, including,

• The incident angle of the neutrino used to calculate the oscillation baseline.

• The flavor of the neutrino (particle identification).



Figure 1. Schematic view of the JUNO detector

• The visible deposit energy of the neutrino in the LS.

Reconstructing the atmospheric neutrino are non-trivial tasks for LS detectors due to their
complex interactions in the LS. In particular, since the angular information of particles in the LS
is mainly carried by the Cherenkov light annihilated in the overwhelming number of scintillator
photons, reconstructing the precise incident angle of neutrinos is extremely challenging based
on traditional methods.

In the context of the rapid development of big data processing as well as the deep learning
techniques within the high energy physics experiment domain, a feasible way it to take advantage
of machine learning models, which are good at extracting hidden information from enormous
amount of data. Base on this idea, in this work we propose a general multipurpose reconstruction
algorithm for GeV-level particles in LS detectors based on machine learning method. The rest
of this paper is organized as follows. In section 2 the basic idea of the method, as well as the
machine learning models will be briefly introduced. In section 3 we present the data sample and
the performance of our models. The status and outlook of this work is summarized in section 4.

2. Methodology
2.1. Feature engineering
In the LS detector, the light received by a PMT is the superposition of the scintillation light
emitted by all tracks in one readout. How the amount of light received by a PMT evolves as
a function of time (waveform) depends upon the properties of these tracks, such as the PMT’s
angle with respect to the track direction, the distance between the PMT and the track, the
position of track start point and end point, as well as the dE/dx of the track (decided by the
particle ID). In order to reconstruct the properties of these tracks (direction, PID, energy etc.),
the basic idea is to use the waveform collected from all PMTs to train the machine learning
models, to predict the properties of these tracks.

However, given the large number of PMTs in the JUNO central detector, its quite difficult to
feed the machine learning models with the entire waveform from all PMTs. A feasible solution
is to extract a few characteristic features (also known as the feature engineering) that reflect
the event topology in the detector from the waveform. This method essentially converts the
3-dimention input into several 2-dimention input channels.

The specific features will reflect the properties of the tracks to be reconstructed. Based on
what’s needed by the neutrino oscillation measurement, the following features are extracted from
the waveform of PMTs surrounding the JUNO central detector.

• The time (relative to the triggering time) when the first photon hits the PMT, which
contains information of the distance between the track and the PMT, as well as the track



angle with regard to the PMT.

• The time (relative to the triggering time) when the ADC value of the waveform reaches the
peak, which reflects the information of the track length.

• The ratio of the peak ADC value and the time when ADC reaches the peak (slope of the
waveform), reflecting the angle between the track and the PMT.

• The total number of p. e. collected by the PMT, reflecting the energy deposition topology
in the LS.

2.2. Machine learning models
Taking the features extracted from the PMT waveform as input, a few state-of-art machine
learning models are built to reconstruct the properties of atmospheric neutrinos (direction,
energy and PID), including a spherical graph-convolution neural network (GCNN), Deepsphere
[3], and two planar convolution neural network (CNN)/Transformer models, EfficientNetV2-S
[4] and CoAtNet [5].

Since the PMTs of JUNO central detector are distributed on the sphere, a natual choice is
to construct graphs on the sphere directly, with PMTs seen as graph vertices. Then convolution
operations can then be performed on the graphs to extract useful signals. Based on this idea, a
GCNN model based on Deepsphere is developed. Figure 2 shows the structure of the Deepsphere
model. The input data is graphs constructed on the detector sphere. The graph vertices are
defined as the input features, while the edges are defined based on the averaged distance between
neighbour vertices. Subsequent to the input features, a set of Chebyshev convolution layer and
pooling layer are followed. Then a fully connected layer is followed before the prediction block.

Figure 2. Structure of the Deepsphere model

Besides the GCNN model, an alternative method is to perform a projection from the sphere
to a planar surface, which converts the PMT features into a set of 2D figures, then convolution
neutral network (CNN) or transformer models are trained to predict the neutrino properties.
In this study, a typical CNN structure, EfficientNetV2-S as well as a transformer based model,
CoAtNet are studied.

The structure of the prediction block of the machine learning models is decided by the variable
to be predicted. For example, for the direction reconstruction, the prediction block implements
the regression of the zenith angle. While for the particle flavor identification, the prediction
block is a softmax layer with standard cross-entropy loss function. One thing to note is that,
to suppress the bias of the angle regression, the models predict the (x,y,z) coordinates of the



Figure 3. Structure of the EfficientNetV2-S model

endpoint of the angle vector instead of predicting zenith and azimuth angles directly. The loss
function is defined as the distance between true endpoints and predicted ones.

3. Performance
The training and test dataset used in this study is simulated based on the Honda atmospheric
neutrino flux [6]. The detector and PMT response is simulated via the JUNO offline software
(JUNOSW) [7]. For the directionality, energy and interaction vertex reconstruction tasks, a
total number of 135,000 numu events with energy ranging from 1 GeV to 20 GeV are selected,
95,000 of which is used as training set, while the rest 40,000 as testing set. For the PID task,
sub-samples of νµ, νe events from the charged current (CC) and events from the neutral current
(NC) are divided. The models are trained to predict the correct label from νµ CC, νe CC and
NC.

Figure 4 shows the performance of direction reconstruction on the test dataset. Both spherical
and planar models provide similar zenith angular resolution, which gets better as the neutrino
energy increases. The overall Gaussian fit of the zenith angular resolution is 9.96 and 11.71
degrees for the Deepsphere and EfficientNetV2-S models, respectively.

Figure 4. (a) Overall zenith angle resolution of the Deepsphere model. (b) Overall zenith angle
resolution of the EfficientNetV2-S model. (c) Zenith angle resolution as a function of neutrino
visible energy.



While reconstructing the visible energy, the training set is re-weighted for a flat energy
spectrum to suppress the regression bias. The performance of the Deepsphere model is
summarized in Figure 5. The energy resolution (up to 1%) also gets better while the visible
energy increases, as more kinetic energy is carried by the leptons from neutrinos interactions
with larger energy.

Figure 5. (a) Overall visible energy resolution of νµ CC events from Deepsphere. (b) Visible
energy resolution as a function of neutrino visible energy.

Figure 6 shows the confusion matrix of the 3-label PID task of the Deepsphere model. The
overall efficiency and purity of νµ CC events are 82% and 85%, while the efficiency and purity of
νe CC events are 91% and 67%. Since the default score cut is used, it can be further optimized
for the efficiency and purity trade-off.

Figure 6. Confution matrix of the PID task by Deepsphere.

4. Summary
In this work, a general reconstruction approach for GeV level particles in the LS detector is
introduced. The method is based on extracting features from PMTs distributed on the detector
and training machine learning models to predict desired properties of the particles. Multiple
machine learning models (including spherical GNN, CNN and Transformer) are developed and



cross-validated. Based on the MC sample produced by JUNO, multiple properties (including
directionality, energy and PID) of atmospheric neutrinos are reconstructed precisely. For non-
trivial reconstruction tasks, such as the neutrino directionality, the performance is unprecedent.
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