
Auto-tuning capabilities of the ACTS track

reconstruction suite

Corentin Allaire1, Rocky Bala Garg2, Hadrien Benjamin Grasland1,
Elyssa Frances Hofgard2, David Rousseau1, Rama Salahat1,4, Andreas
Salzburger3, Lauren Alexandra Tompkins2

1Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
2Stanford University, Stanford, CA 94305, USA
3CERN, 1211 Geneva, Switzerland
4An-Najah National University, P400 Nablus, Palestine.

E-mail: corentin.allaire@cern.ch

Abstract. The reconstruction of charged particle trajectories is a crucial challenge of particle
physics experiments as it directly impacts particle reconstruction and physics performances. To
reconstruct these trajectories, different reconstruction algorithms are used sequentially. Each
of these algorithms uses many configuration parameters that must be fine-tuned to properly
account for the detector/experimental setup, the available CPU budget and the desired physics
performance. Examples of such parameters are cut values limiting the algorithm’s search space,
approximations accounting for complex phenomenons, or parameters controlling algorithm
performance. Until now, these parameters had to be optimised by human experts, which is
inefficient and raises issues for the long-term maintainability of such algorithms. Previous
experience using machine learning for particle reconstruction (such as the TrackML challenge)
has shown that they can be easily adapted to different experiments by learning directly from
the data. We propose to bring the same approach to the classic track reconstruction algorithms
by connecting them to an agent-driven optimiser, allowing us to find the best input parameters
using an iterative tuning approach. We have so far demonstrated this method on different track
reconstruction algorithms within A Common Tracking Software (ACTS) framework using the
Open Data Detector (ODD). These algorithms include the trajectory seed reconstruction and
selection, the particle vertex reconstruction and the generation of simplified material maps used
for trajectory reconstruction.

1. Introduction
Charged particles trajectories reconstruction is essential to most high-energy physics
experiments. A precise measurement of those trajectories allows us to properly reconstruct the
primary interaction vertex, identify the particles and evaluate their momentum. Trajectory
reconstruction is also one of the most computationally intensive components of event
reconstruction, as it scales quadratically with the number of particles in the detector. In this
context, great efforts are being deployed to optimise such algorithms’ performances in terms
of physics object reconstruction and computing efficiency. One option for such optimisation is
tuning the different parameters of the algorithms. Those parameters range from preselection of
the particles’ properties to simplification of the detector effects or limits to the search space. Due
to the large number of parameters for each algorithm, searching for the optimal combination can



be difficult and time-consuming. To make matters worse, the optimum would change depending
on the detector used, the physics studied, and the experimental conditions, demanding updates
almost annually.

In this paper, we propose using auto-tuning techniques to optimise the parameters of
different tracking algorithms: constructing simplified material models for the detectors (material
mapping), seeding of the tracks and reconstructing the primary vertices. Using data-driven
techniques will allow us to learn the optimal set of parameters as a function of the experimental
condition with minimum human input. The subsequent time savings should then allow more
granular parameter optimisation that could be region-specific, signature specific...

2. ACTS and dataset
A Common Tracking Software (ACTS)[1] is a tracking framework being developed since 2016
as an international collaboration with the goal of providing a generic, experiment-independent
open-source software framework for charged particle tracks reconstruction. Since this framework
is meant to be used by many different physics experiments, it gives a great opportunity to test
auto-tuning with tracking algorithms on multiple configurations. The optimisation algorithms
presented in this paper have been implemented in the ACTS library and are thus usable by its
many users for their optimisation needs.

The ACTS framework also implements two virtual detectors for testing purposes, the Generic
Detector (used for the Seeding and Vertexing optimisation) and the Open Data Detector
(ODD)[2]. The Generic Detector corresponds to the detector design used in the TrackML
challenge[3]; it is a typical all-silicon LHC tracking detector with ten layers of cylinders and disks
and has been used as a reference for many developments in track reconstruction. The ODD is
an evolved version of the Generic Detector implemented using DD4Hep[4], which also provides
all the support structure and cabling of a real detector. This allows us to more accurately study
the effect of particle-matter interaction in our proton-proton collision.

To study the performance of our tuning, we have used simulated tt̄ events (which are the
standard for tracking performance evaluation) under conditions similar to the HL-LHC: an
energy in the centre of mass of

√
s = 14 TeV and 200 additional pile-up vertices per event. The

events were generated using Pythia8[5], and only particles with a transverse momentum of more
than 1 GeV were considered.

3. Optimisation Framework
We have looked at different derivative-free approaches for our parameter tuning. At its simplest,
those algorithms are given a scoring function and will look for the parameters configurations
which optimise it. In the case of tracking, the score is performance-based and quite expensive
to compute (efficiency, fake rate...) and will tend to be stochastic. This means that classical
function minimisation algorithms such as Minuit[6] won’t be effective. Finally, since it would
be extremely complex to differentiate our tracking algorithms, we also need a derivative-free
approach for our optimisation.

In this study, we have looked at two different optimisation frameworks: Oŕıon[7], an
asynchronous framework for black-box function optimisation and Optuna[8], an open source
software for automatic hyperparameter search. Both can easily be used with some simple
Python code which can interface with the ACTS’ Python-based jobs that we developed to
expose the ACTS algorithms’ configuration parameters and outputs. This will allow us to
tune the parameters easily and extend this optimisation to other algorithms. Each of those
frameworks implements different optimisation algorithms that can result in different speed and
physics performances.

In our test with Oŕıon, we used a random search algorithm. As its name implies, it consists of
a random sampling of the parameters space. For a large enough number of trials, configurations



close to the optimum should have been visited. This method is slow but should converge, given
enough trials. It is currently used to verify the validity of the scoring used in the mapping and
the feasibility of its optimisation.

In the case of Optuna (in particular for the seeding and vertexing), we tested a Tree-structured
Parzen Estimator (TPE)[9] algorithm. The TPE is a Bayesian optimisation method that builds
a probabilistic model and uses it to decide which parameter value to use in the next iteration.

4. Material Mapping
When reconstructing the trajectory of a particle, one needs to account for the material in the
detector properly. As particles interact with matter, they deviate from their original trajectory;
we thus need to increase the search window for hits in the next layer while reconstructing tracks.
For this effect to be accounted for, the tracking framework needs to know how much material
is present at each point in the detector. Usually, very precise simulations of our detectors exist
(most of the time based on Geant4[10]), but they are too memory hungry and using them as
part of the track reconstruction would greatly slow down the process.

To solve those issues, we use a simplified material model called a material map that can
be used. Those maps are created by projecting all the material in the detector onto a set
of predetermined surfaces, usually the entrance surfaces of the different sensitive layers. Each
mapping surface is binned in two dimensions, and the material projected in each bin is averaged.
When a track intersects one of the mapping surfaces, we determine which bin it crosses, and we
compute the material interaction effect based on the material stored in the bin. An illustration
of the mapping for one surface can be seen in Figure 1(a)

While this method is very effective, producing the map can be quite a long process and require
a lot of manual optimisation. We must select which surface we want to map the material onto
(usually self-evident) and which binning to apply to each surface. That second part requires a
good understanding of the detector geometry and much trial and error. If we choose a binning
with too coarse bins, we will miss some of the geometry details, resulting in an especially biased
reconstruction. While if we select a binning that is too fine, the time needed to generate the
map will increase significantly, and the size in memory of the map will be too large, slowing
down its readout.

Using Oŕıon, we have tried to perform the mapping of the ODD automatically. The user
only selects a set of surfaces to map the material onto, and the algorithm finds the optimal
binning automatically. For our test, 107 surfaces were used in the mapping, resulting in a total
of 214 parameters to optimise. This was performed using a random search algorithm; the focus
is finding a score that can be used to judge the quality of a map. After many trials, we decided
to use equation 1 for the score, where bins is the number of bins in a surface, and variance is
the variance of all the material projected onto a given bin. By minimising this score, we keep
the number of bins as small as possible while minimising the variance (and thus having bins
that adequately represent the local material). This method has been tested and performs quite
well; results were obtained after one day on 40 CPU cores and show a good agreement between
the material in the map and the simulation Figure 1(b).

Score =
1

bins
×

∑
bin

variancebin × (1 +
√
bins) (1)

5. Track Seeding
Track finding is a complex problem due to the very large combinatorics that arises when many
hits are present in the detector. To simplify this problem, we perform a first step called seed
finding, in which we explore hits combinations in the first few layers of the detector. With



4− 3− 2− 1− 0 1 2 3 4
Eta

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

X0

Validation X0

Geantino X0

4− 3− 2− 1− 0 1 2 3 4
Eta

0.6

0.8

1

R
at

io
 V

al
id

at
io

n/
G

ea
nt

in
o 

X
0

ra
tio

Eta

Figure 1. (a) Projection of the material onto bins (arrows) of different sizes. (b) Comparison
between the material encountered in a Geant4 simulation of the ODD and the one in the ACTS
propagation.

this exploration, we generate seeds, possible track candidates, that will be used as input for
the track finding. In ACTS, seeds consist of triplets of hits in the detector, to which we can
apply a helicoidal fit to get a coarse estimation of the corresponding track’s parameters. Once
this has been done, seeds are filtered using user-defined parameters before being passed to the
track finding. Those parameters can differ significantly depending on the detector geometry and
experimental conditions; we can thus try to apply our auto-tuning solution to them.

It is important to understand that if for a given particle no seed is reconstructed, then the
particle is lost. Seeding thus has a significant impact on the reconstruction performance. To
study the performances of seeding, we will look at three figures of merit at the end of the tracking
chain: the efficiency (fraction of particles reconstructed), the fake rate (fraction of tracks not
corresponding to any particle) and the duplicate rate (fraction of tracks that are duplicates of
already reconstructed tracks). The first two directly impact the physics performance of the
algorithm, while the third will impact the speed of the reconstruction. When tuning the seeding
parameter, we will thus use the score from equation 2.

Score = Efficiency − (FakeRate +
DuplicateRate

K
+

RunTime

K
) (2)

To tune the seeding, we have determined eight relevant parameters that can be optimised. Both
Optuna and Oŕıon converge in one hour to a good parameter configuration. The resulting
efficiency after track reconstruction is shown in Fig 2(a), demonstrating an improvement
concerning an unoptimised configuration in both cases. Similar improvements were observed
concerning the duplicate and fake rates.

6. Vertexing
Once tracks have been reconstructed, it is helpful for high pile-up experiments to reconstruct
the primary vertices particles originated from. This is performed by the vertexing algorithm. In
ACTS, we use an adaptive multi-vertex finder (AMVF)[11]. This algorithm simultaneously fits
all the tracks in the detector, assigning them to the different vertex seeds until all vertices have
been fitted.

Many variables are used in the evaluation of the performances of this AMVF. The efficiency
(fraction of truth vertices reconstructed) and the fake rate (fraction of reconstructed vertices
not associated with a truth vertex) describes the capacity of our algorithm to reconstruct
vertices. We can then separate the reconstructed vertices into three categories: the clean vertex



20 40 60 80 100 120 140 160 180
Number of simultaneous pp collisions

0

10

20

30

40

50

60

70

80

N
um

be
r 

of
 r

ec
on

st
ru

ct
ed

 p
rim

ar
y 

ve
rt

ic
es Unoptimized

Optuna tuning
Orion tuning

Reco. Vertices: Clean

Generic Detector in ACTS
t14 TeV, t

Figure 2. (a) Track reconstruction efficiency after seeding optimisation. (b) The number of
clean vertices reconstructed after optimisation of the vertexing.

(associated with only one truth vertex), the merged vertex (associated with multiple truth
vertices) and the split vertices (multiple vertices associated with the same truth vertex). Our
goal is to reconstruct as many clean vertices as possible while minimising poorly reconstructed
ones. Using the efficiencies and the fraction of vertices in each category, we can compute a score
representing the quality of the vertex reconstruction; this score is shown in equation 3.

Score = (EffTotal + 2EffCleaned)− (Merged + Split + Fake + Resolution) (3)

The optimisation algorithm converged in roughly four hours to optimise the five parameters
of the vertexing. The resulting number of clean vertices is shown as a function of the pile-up in
Figure 2(b). Good improvement in the number of cleaned vertices can be seen concerning the
unoptimised configuration, especially at high pile-up. Similarly, a reduction in the number of
fakes at high pile-ups was observed.

7. Conclusion
We have shown that data-driven auto-tuning algorithms can be used in the context of
track reconstruction to optimise the input parameters of different algorithms such as seed
reconstruction, vertex reconstruction and material mapping. Those methods have been
implemented in the ACTS framework and can thus be used by any experiment using it for
their tracking needs. In the future, our effort will be directed toward generalising this approach
so that most algorithms in ACTS can be automatically tuned.

8. Acknowledgments
This project has received funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No 101004761.
This work was supported by the National Science Foundation under Cooperative Agreement
OAC-1836650.

References
[1] Ai X et al. 2022 Computing and Software for Big Science 6 URL

https://doi.org/10.1007/s41781-021-00078-8

[2] Allaire C, Gessinger P, Hdrinka J, Kiehn M, Kimpel F, Niermann J, Salzburger A and Sevova S 2022
Opendatadetector URL https://doi.org/10.5281/zenodo.6445359

[3] Amrouche S et al. 2023 Computing and Software for Big Science 7 (Preprint 2105.01160) URL
https://doi.org/10.1007/s41781-023-00094-w



[4] Frank M, Gaede F, Grefe C and Mato P 2014 Journal of Physics: Conference Series 513 022010 URL
https://dx.doi.org/10.1088/1742-6596/513/2/022010

[5] Bierlich C et al. 2022 SciPost Phys. Codebases 8 URL https://scipost.org/10.21468/SciPostPhysCodeb.8

[6] James F a 1998 CERN Program Library Long Writeups URL https://cds.cern.ch/record/2296388

[7] Bouthillier X et al. 2022 Epistimio/orion: Asynchronous distributed hyperparameter optimization URL
https://doi.org/10.5281/zenodo.3478592

[8] Akiba T, Sano S, Yanase T, Ohta T and Koyama M 2019 Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining URL https://doi.org/10.1145/3292500.3330701

[9] Bergstra J, Bardenet R, Bengio Y and Kégl B 2011 Advances in Neural Information Processing Systems
vol 24 ed Shawe-Taylor J, Zemel R, Bartlett P, Pereira F and Weinberger K (Curran Associates, Inc.) URL
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[10] Agostinelli S et al. 2003 Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment 506 250–303 ISSN 0168-9002 URL
https://www.sciencedirect.com/science/article/pii/S0168900203013688

[11] ATLAS 2019 Development of ATLAS Primary Vertex Reconstruction for LHC Run 3 Tech. rep. CERN
Geneva URL https://cds.cern.ch/record/2670380


