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Abstract. Precise simulations are essential for advancing particle physics research, but they
require high computational resources due to the complexity of calorimeter interactions. To
reduce this cost, we propose a novel generative model that interprets calorimeter showers as
point clouds rather than 3D images. Each hit is modelled as part of a hit distribution depending
on a global latent calorimeter shower distribution. Our model is based on PointFlow (Yang et
al., 2019) and consists of a permutation invariant encoder and two normalizing flows: one for
modelling the global latent distribution and another for modelling individual hits conditioned
on it. We present first results and compare them with state-of-the-art voxel methods.

1. Introduction
Particle physics requires precise simulations to achieve scientific progress. More than half of the
computational resources of the Large Hadron Collider (LHC) computing grid are already used
for simulation [1]. In the future High Luminosity Phase of the LHC, about 100 times as many
simulated events will be needed [2]. The simulation of calorimeters is typically one of the most
computationally intensive parts of a detector simulation, and there is an ongoing effort to reduce
this computational cost using machine learning.

A high-energetic particle interacting with the material of a calorimeter typically creates a
cascade of secondary particles, which in turn interact with the material of the calorimeter,
creating an avalanche of lower-energy particles. Modern calorimeters often consist of a sandwich
of passive absorber material and active high granular sensors which record the energy deposit
(the so-called hits).

In previous attempts at generative modelling of calorimeter showers with Deep Learning, the
energy deposits were considered as a 3D grid of voxels and the individual shower as a 3D image.
Most models [3–11] used to study the artificial generation of calorimeter data, were Generative
Adversarial Networks (GANs) [12]. GANs can have relatively flexible architectures and are fast
generators, but they suffer from several shortcomings: incomplete distribution coverage (mode
collapse) and convergence is often difficult to achieve. Recent developments extend the plain
GAN approach and combinations of GANs and Autoencoders [13, 14] are used. A completely
different approach are Normalizing Flows [15] which allow likelihood-based training also on
calorimeter data [16, 17]. This lead to high quality results. One drawback of the CaloFlow [16]



approach and normalizing flows in general is that they do not scale well to large dimensions
and therefore are not directly applicable for simulating high granular detectors with many
active cells, such as the future CMS forward calorimeter HGCal [18] or the proposed CALICE
calorimeter [19]. To scale likelihood-training to high dimensions, Mikuni et. al. [20] proposed
to use score-based diffusion models instead of normalizing flows [15]. We take a different route
of scaling likelihood-base training. All previous mentioned models are trained on voxel-based
data. This has multiple disadvantages. First, in a high granular calorimeter most cells have
no entries, therefore the data is sparse. Second, an irregularly shaped calorimeter is often not
directly transferable to voxels. The architecture of the model has to be developed directly for
the calorimeter. So one model is not directly applicable for another calorimeter dataset. This
leads to worse comparison possibilities of the different models. We interpret the hits of the
showers as point clouds. This resolves the sparsity of the data, since empty cells are dropped.
Also, the geometry of the calorimeter is transferable, and the model can be used for different
datasets without altering the model structure.

2. Model
The model here described is based on PointFlow [21]. The target of the PointFlow paper was
to model the surface of objects as point clouds. PointFlow used continuous normalizing flows.
In contrast, Klokov et al. [22] updated the model with discrete normalizing flows. This leads to
faster training and inference.
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Figure 1. A schematic of the model.

Like both models, our model consists of three sub-models, as shown in Fig. 1. The
permutation invariant encoder qφ, which maps the entire point cloud X into the latent
representation z. Our encoder design is based on Particle Flow Networks [23]. The z-
representation is enriched with the number of all hits nhits and the transformed total energy
of the hits Esum. The other two models are both conditional normalizing flows, based on
rational quadratic spline (RQS) coupling layers [24] and ResNet [25] conditioners. To keep



the latent space more flexible, z is transformed by the Latent Flow, similar to the Variational
Lossy Autoencoder [26]. The flow is conditioned on the energy of the incoming electron Ein.
The Point Flow transforms each point xi separately, it is conditioned on the latent variable z,
and therefore models the distribution of the points xi conditioned on the distribution of z.

The model is trained by minimizing the function
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with the ADAM [27] optimizer. The loss function at hand is based on the loss function of a
variational autoencoder (ELBO). Since normalizing flows are invertible, Lrecon is not trained on
reconstructing the point clouds. Instead, the model is trained to maximize the likelihood of the
transformed data to a Gaussian. With Lprior the model learns a transformation from a Gaussian
to the latent space z. The last part is the entropy of the decoder and acts as a regularization
term on the z space.

All shower hits are generated in parallel and independently of each other. The model cannot
take into account whether a calorimeter cell has already been taken by another generated shower
hit. Therefore, we need a special sampling method to get consistent showers.

For shower generation, we want to sample from the probability density of the possible showers.
Therefore, we need the probability that a calorimeter cell was hit and the probability density of
the possible energies in the hit cell. Both quantities are not directly accessible. We approximate
these probabilities with the Point Flow. We sample a relatively large number of points (10k)
with their corresponding probabilities. The average probability of all points in one cell is taken
as the probability of hitting that cell. We sample nhits cells without replacement and with their
probability. For each sampled cell, we then pick an energy value according to all energy values
sampled for the hit cell and their probability. Therefore, we use the model as a Monte Carlo
approximator of the showers.

3. Experimental Setup
The CLIC calorimeter data set [10, 28] is used to test the model. In the data, the showering of
electrons entering a section of the CLIC detector were simulated in GEANT4 [29]. The energy
of the incoming electrons is between 10 – 510 GeV. The ECAL part of the simulation is used.
The resulting calorimeter images have a dimensionality of (51× 51× 25).

The voxel dataset is transformed into a point cloud dataset. All voxels with energy input are
considered. The 3 position coordinates are uniformly distributed over the voxel space. So that
the resulting distribution fills a unit box. This processing is referred to as dequantization [30].
Since the energy inputs are greater than zero and decrease exponentially, the logarithm of the
energy is used. The resulting 4D point clouds were then normalized. The model is trained using
four parallel NVIDIA V100 GPUs for a total time of 24 hours.



4. Results and Discussion
For generative models to replace simulations, their outputs must be consistent. To validate this,
we look at different distributions of the generated data.
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Figure 2. the average shower profiles in all three directions are shown. In gray, the one of
GEANT4. In red, the direct density of the flow. In blue, the result of the sampling.

Fig. 2 shows the average shower profile in all directions. The results of the direct density
of the model and the results after sampling from the model are compared with the simulation
data. It can be seen that the model produces matching results, but the tails of the distributions
are not well represented by the sampling.

500 1000 1500 2000 2500 3000
nhits

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

de
ns

ity

50 - 150 GeV

200 - 300 GeV

400 - 500 GeV

GEANT4
flow density
flow sample

0 100 200 300 400 500 600
Esum [GeV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014de
ns

ity

50 - 150 GeV

200 - 300 GeV

400 - 500 GeV

GEANT4
flow density
flow sample

10 3 10 2 10 1 100 101 102

Cell Energy [GeV]

10 8

10 6

10 4

10 2

100

102

de
ns

ity GEANT4
flow sample
flow density

Figure 3. Three statistics of the data are shown. On the left, the number of cells with energy
in three energy regimes. In the middle, the summed energy in the cells in the same regimes. On
the right, the distribution of energy inputs in the cells. The colour scheme is consistent with
Fig. 2.

Fig. 3 compares three statistics of the showers. The first two show that both the number of
cells hit and the sum of the energy in the cells agree well with the results of GEANT4 – both for
the direct density of the model and for the sampled results. The right graph shows that there
are significantly fewer low-energy hits after sampling. This is consistent with the decrease in the
tails in Fig. 2.



5. Conclusion and Outlook
The results of the model appear promising. Except for the tails, the model generates showers
of a high quality. A possible further development to get the problems of the model at the
tails under control would be the use of a post-processing network, as shown in [13, 14]. We are
currently investigating the model’s performance on other datasets. This will be part of another
publication.

Overall, the model shows good results and can overcome the problems of voxel based models.
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