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Abstract. The continuous growth in model complexity in high-energy physics (HEP) collider
experiments demands increasingly time-consuming model fits. We show first results on the
application of conditional invertible networks (cINNs) to this challenge. Specifically, we
construct and train a cINN to learn the mapping from signal strength modifiers to observables
and its inverse. The resulting network infers the posterior distribution of the signal strength
modifiers rapidly and for low computational cost. We present performance indicators of such a
setup including the treatment of systematic uncertainties and highlight the features of cINNs
estimating a signal strength for HEP-data on simulations.

1. Introduction
Performing many-parameter maximum likelihood fits in high-energy physics (HEP) can be time-
consuming. Parameter inference with conditional invertible neural networks (cINNs) is ultrafast
and thanks to the underlying normalizing flow, the trained network model is continuous and
continuously differentiable in both directions providing additional generative properties. These
versatile networks have already been successfully applied to a broad range of challenges outside of
HEP ranging from scientific model inversion to image colorization and guided image generation
[1, 2]. In high-energy physics, cINNs have been applied to stellar evolution parameter estimation,
cosmic-ray source property determination and detector effect simulations [3, 4, 5]. In this paper,
the applicability of cINNs to infer signal strength modifier parameters (defined as the ratio of
cross sections µ = σ/σSM ) is demonstrated and the performance measures of the resulting model
are described.

2. Vector Boson associated Higgs Production: Analysis Strategy and Setup
The network has been trained to infer the signal strength of the gluon-fusion (gg → ZH) and
quark-initiated VH-final state (qq → ZH and qq → WH) processes using simulated Monte Carlo
(MC) samples at a collider experiment. In the analysis workflow one-lepton and two-lepton final
states with H → bb̄ are considered and the events are assigned to categories according to the
number of reconstructed leptons and b-jets. These categorized events are then further classified
with a feed-forward deep neural network (DNN) into 13 categories for the 3 relevant signal and
10 other background processes. The assigned DNN scores for each event are then histogrammed



and used as fit observable. In cINN terminology, these histograms represent the conditions c
and used as an input for the network.

3. Neural Network Setup
3.1. Introduction to cINNs
Conditional invertible neural networks have an input node, an output node and a condition node.
The network maps the inputs to the output space through alternating layers of affine coupling
blocks (ACBs) and permutation layers. The ACBs encode the normalizing flow, such that the
resulting network model is continuous and continuously differentiable in both directions. The
condition node is connected to each of the ACBs, serving as an additional input. The output
space is called latent space.

The aim of the training is to approximate the unknown true posteriors p(x|c) of the physics
parameters x under the observation of c with the network parameters ϕ, i.e. to obtain

pϕ(x|c) ≈ p(x|c). (1)

This can be done by minimizing the Kullback-Leibler divergence between the approximated
posterior and the true posterior

KL [p || pϕ] = Ex∼p(x|c)

[
log

(
p(x|c)
pϕ(x|c)

)]
= −Ex∼p(x|c) [log pϕ(x|c)] + const. (2)

The Kullback-Leibler divergence in eq. 2 can be rewritten using the network output variables
f(x) = z. Setting the latent space variable distribution to a normal distribution, the result of
eq. 2 becomes

L = Ex∼p(x|c)

[
z2

2
− log

∣∣∣∣det ∂z∂x
∣∣∣∣] (3)

and can be used as a loss function for the training, if the ACB’s determinants are feasible to
evaluate. The GLOW coupling block [6] provides such a determinant since it consists of two
consecutive transformations with a triangular Jacobian matrix each. Its determinant is thus
just the product of the diagonal entries of the matrix. A sketch of the GLOW coupling block is
shown in fig. 1 for both the forward and the backward pass with input- and output variables
u and v, respectively. The intermediate transformations si and ti do not have to be invertible
themselves and can be parameterised with feed-forward networks.

3.2. Synthetic Dataset Generation
Reliable parameter inference requires correct modelling of the expectations in the training
dataset. The effects of the physics parameters, systematic and statistical fluctuations are all
modelled in the conditions. For shape-changing systematic effects where only templates of the
1σ up- and down variations are accessible a histogram template morphing technique [7] has
been applied to produce samples with different nuisance parameters for each uncertainty. The
resulting histogram bin contents for each process are varied to represent the limited MC sample
size.

For each histogram sample the signal processes have been scaled with random numbers drawn
from a Γ-distributed prior. This particular prior enables a more refined sampling in the region
µ ≲ 10 where the signal strength modifiers are mostly expected in the data. The long decay
of the Γ-distribution also enables to maintain some sensitivity for a higher-than-expected signal
scenario. The nuisance parameters of each background process normalizing uncertainty have
been drawn from a lognormal prior with mean 1; for the luminosity nuisance parameter a
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Figure 5. Schematic overview of the architecture of the conditional affine coupling blocks used in the cINN. In particular we show the

GLOW (Generative Flow; Kingma & Dhariwal 2018) configuration, where the outputs si() and ti() are computed by a single subnetwork
(for each i). The top panel shows how data is passed through the block in the forward direction (from x to z), while the bottom panel
displays the inverted case following the affine transformations in Equations(4) and (5).

GLOW (Generative Flow; proposed by Kingma & Dhari-
wal 2018) configuration (see Section 3.2 for details). In this
setting the forward mapping is modified to f (x; c) = z and
the inverse to x = g(z; c). The invertibility is given for fixed
condition c as

f ( · ; c)−1 = g( · ; c). (6)

In our regression problem the conditioning is given by the
observations. Therefore, as for the standard INN, during
training given an observation the network will learn to en-
code all information about the physical parameters in the
latent variables that was not contained in the observation.
Also analogous to the standard INN, we retrieve the de-
sired posterior distribution p(x|y) for a given observation y
by sampling the latent variables according to their Gaussian
priors and using the inverted network g:

xposterior = g(z; c = y), with z ∼ pZ (z) = N(z, 0, I), (7)

where I is the K × K unity matrix with K = dim(z).
One of the cINN benefits over the standard INN archi-

tecture is that no zero padding (as described in Ardizzone
et al. 2019a) is necessary if the dimension of [y, z] were to
exceed that of x, as the conditioning input c can be arbi-
trarily large in this approach and the dimension of z simply
matches that of x.

3.2 Architecture Details

To implement the cINN for our purposes we use the ’Frame-
work for Easily Invertible Architectures’ (FrEIA) for python
(Ardizzone et al. 2019a,b) based on the ’pytorch’ library
(Paszke et al. 2017).

In our problem the input x is given by the six physi-
cal parameters of the isochrone tables, so that, following the

cINN architecture, we also have six latent variables z. Our
cINN is conditioned on the observables, 2 and 5 magnitudes
for Wd2 and NGC 6397, respectively, and the individual stel-
lar extinctions, so that the condition c has the dimension 3 in
the Wd2 cases and 6 for NGC 6397. Ardizzone et al. (2019b)
also introduce a ’conditioning’ network which transforms the
input condition into some intermediate representation and
is trained jointly with the cINN. We do not use this addi-
tional network in our setup, as we find that given the few
observables in our problem the cINN tends to overfit to the
synthetic training data when employing a feature extraction
network, resulting in poor performance on the real bench-
mark data.

Our cINN consists of 16 conditional affine coupling
blocks, each in the GLOW configuration (Kingma & Dhari-
wal 2018), which reduces computational cost and speeds up
learning by jointly predicting the subnetwork outputs si()
and ti() using a single subnetwork. As in Ardizzone et al.
(2019b) we introduce an additional nonlinear transforma-
tion of the scale coefficients s,

sclamp =
2α
π

arctan
( s
α

)
, (8)

where α = 1.9, so that sclamp ≈ s for |s | � α and sclamp ≈ ±α
for |s | � α, in order to avoid instabilities induced by large

magnitudes of the exponential exp
(
sclamp

)
.

We alternate the conditional affine coupling blocks with
random permutation layers. The latter consist of random
orthogonal matrices which mix the information between the
two streams u1 and u2 in the coupling blocks. Following
Ardizzone et al. (2019b), these matrices are fixed during
training and cheaply invertible. The combination of these
permutation layers with the interlocked affine transforma-
tions of the affine coupling blocks ensures that the network
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Figure 1. The GLOW coupling block [3]. The two consecutive transformations are written in
the purple boxes.

narrower lognormal prior has been chosen and affects each process equally. Since the expected
data is also Poisson-distributed, the bin content of each bin has been varied accordingly as well.

With the 16 physics signal and background modifier parameters and the luminosity nuisance
parameter the total dimension of network input parameters is then 17. A sketch of the network
setup with the inputs and nuisance parameters is shown in fig. 2.

Figure 2. The network setup, training and inference process. The nuisance parameters for the
shape-changing systematic uncertainties ηi effects are exclusively represented in the conditions
and are not used as a network input.

3.3. Network Setup
The training and validation datasets consist of 1.5 million and 150,000 samples, respectively.
The cINN model has been implemented in PyTorch [8] using the Framework for Easily Invertible
Architectures (FrEIA) [1] library. The cINN has 12 GLOW ACBs and 12 permutation layers.
The sub-networks in the GLOW blocks have 3 layers with 128 nodes with ReLU activation each.
The network has been trained for 11,000 epochs with the Adam optimizer [9] and the model
with the lowest validation loss has been evaluated further. For the learning rate, an initial value
of 10−3 has been gradually decreased to 10−5 through a cosine learning rate scheduler.



4. Signal Strength Modifier Parameter Inference
The trained network’s performance can be characterized by comparing the validation set’s
distribution in the latent space to the expected normal distribution; by computing the calibration
errors and evaluating the median calibration error; by comparing the predicted µ to the MC
truth and, by comparing the posterior samples to the prior distributions.

4.1. Latent Space Distribution
Since the posterior samples are produced through the backward evaluation of the normal-
distributed latent space samples, it is crucial to check whether the network maps the input
samples to the latent space correctly. The latent space distribution for three selected output
nodes are shown in fig. 3. For all output nodes the output distribution closely follows the required
normal distribution. For this reason, sampling from the normal distribution for posterior
inference is justified.

Figure 3. The latent space distribution histogram (blue) and the expected normal distribution
N (0, 1) (red).

4.2. Calibration Curves
The posteriors for a fixed condition are obtained by sampling from the latent space and inverting
the network. For this reason, it is important to check whether the trained model is free of biases
in the predicted posterior distributions. In case of a perfectly calibrated network, the number
of predicted posterior samples containing the true MC value in the q quantile (Nin) divided by
the total number of posteriors N equals q. The calibration error ecal is defined as

ecal(q) =
Nin

N
− q (4)

and its absolute median is a measure of miscalibration of the model. The calibration curves
(the fraction of histograms Nin/N as a function of q) for all parameters show similar features
where those of four selected parameters are shown in fig. 4. As the calibration errors for all
parameters vary around zero, the calculated blue curves fluctuate around the gray identity line.
The maximum median calibration error among all parameters is ecal ≈ 4%. Thus, the trained
model is not showing any strong biases towards a parameter region.

4.3. Predictions and Posterior Distributions
Compared to maximum likelihood fits, parameter inference is ultrafast. While the maximum
likelihood fit required around 12 minutes for parameter inference, the cINN needed only roughly
0.4 seconds. The parameter’s predictions and uncertainties are determined from the mean of
the posteriors and the corresponding 68% quantiles, respectively. The inferred parameters can
be classified into three categories:



Figure 4. The fraction of histograms Nin/N as a function of q.

• Well-reconstructed parameters: these parameters’ posteriors are narrow distributions
around the true MC value and have low uncertainty. These parameters have a large impact
on the input histogram, which the cINN can fully identify and reconstruct.

• Weakly-reconstructed parameters: the network has become sensitive to the parameter but
yields predictions of low confidence. These parameters induce moderate changes in the
histogram or the cINN cannot fully resolve their effects.

• Unrecognized parameters: for these parameters, the network has no sensitivity. As these
parameters have a marginal impact on the conditions c, it fits the parameter value to the
average of the prior distribution and returns the prior as the posterior distribution. The
latter can be seen from the weak statistical dependence of the condition on the parameter,
which directly yields

p(x|c) ≈ p(x). (5)

The 2D histograms of the true value plotted against the selected predicted parameters is
shown in fig. 5. The corresponding posterior distributions for the Standard Model expectation
for these parameters are shown in fig. 6 qualitatively.

For the well-reconstructed parameters (such as the nuisance parameter of the dominant Drell-
Yan background process) all predictions scatter closely around the true MC value. The posteriors
are narrow, hence the uncertainties are small. For these parameters, the trained network shows
the highest sensitivity. Conversely, the unrecognized parameters’ (as the low VBF background’s)
predictions scatter around the average of the prior distribution while the predicted posterior
resembles the prior. Weakly-reconstructed parameters (as the luminosity nuisance) show an
in-between state with some sensitivity developing from the mean of priors. Depending on the
region, the posterior distributions still show some similarities to the priors; nevertheless some
deviations in the overall posterior shape from the prior can already be observed.

For the WH signal process, the signal strength modifier parameters cannot be inferred with
the same sensitivity over the whole prior region. For this reason, the predictions for smaller µ
differ from the MC truth and the posteriors are broader. This behaviour results in a tail-like
structure in the 2D histogram. The overall posterior histogram shape has some similarities with
that of the priors in this low-sensitivity region. At the same time, the posteriors become more
peaked and symmetric in the more sensitive region.

5. Conclusion
In this work, a method for signal strength modifier parameter inference with conditional
invertible neural networks has been presented. The trained model reconstructs these parameters
and does so several orders of magnitude faster than many-parameter maximum likelihood fits,
with an observed 1800-fold speed-up. The trained model’s latent space distribution matches the



expectation and the calibration curves do not show any strong biases. The network’s resolution
can be characterized with the widths of the posteriors, from which the parameter uncertainties
can be obtained. As the network model is continuous and continuously differentiable cINNs
posses generative properties and have the potential to be used in differentiable analysis workflows
as well.

Figure 5. Comparison of the predicted µ to the true MC values for three nuisance parameters
and a signal strength modifier.

Figure 6. The posterior (blue) and prior distributions (orange) with the location of the MC
truth, predictions and 68% quantile edges, qualitatively.
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