
Affine parametric neural networks for high-energy

physics

Luca Anzalone1,2, Tommaso Diotalevi1,2 and Daniele Bonacorsi1,2
1Department of Physics and Astronomy (DIFA), University of Bologna, Italy
2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bologna, Italy

E-mail: luca.anzalone2@unibo.it

Abstract. Signal-background classification is a central problem in High-Energy Physics
(HEP), playing a major role for the discovery of new fundamental particles. The recent
Parameterized Neural Network (pNN) is able to leverage multiple signal mass hypotheses as
an additional input feature to effectively replace a whole set of individual neural classifiers, each
providing (in principle) the best response for the corresponding mass hypothesis. PNNs have
the potential to overcome the burden of training a multitude of independent classifiers, enabling
interpolation as well as some degree of extrapolation, but also achieving better generalization
and data-efficiency as a single model is trained on all the available data. In this work we
discuss several design choices, with a particular focus on the conditioning mechanisms, to enable
parametric neural networks for real-world physics analyses.

1. Introduction
The problem of signal-background classification represents a crucial part of a particle physics
analysis. It is of fundamental interest the development of methods able to provide an increasingly
better selection efficiency. The aim of this process is to discard how much background events as
possible, representing everything that is already well-known, while retaining the largest amount
of signal events: the theorized particle decay(s). Preserving enough signal in a statistically
plausible manner is fundamental for physicists, in order to give relevance to their findings. The
very classical approach to this problem is to rely on expert knowledge to derive hand-designed
threshold or cut rules, applied to one or more manually-selected variables. Such cut-based
approach has been (partially) replaced by machine learning (ML) methods, such as decision
trees (DTs) [1] and neural networks (NNs) [2]. ML methods have the benefit of being able to
find higher-order relations (or patterns) in the data that often lead to superior discrimination
performance, without the need of either an extensive study of the data nor the design of hand-
made rules or features.

Despite such benefits, when physicists want to study their theoretical hypotheses on multiple
mass points, even the ML approach starts to be difficult to apply in practice: assuming we want
to study our hypothetical signal(s) on M mass values, we would be required an effort that scales
as a function of the number of mass hypotheses to test: as O(M), i.e. linearly. In practical
terms, this means that the development, training, hyper-parameter tuning, management, and
eventual deployment effort is almost multiplied by M : the number of chosen mass points. In
addition, generating a sufficient amount of data samples for each mass point can be challenging,
as Monte-Carlo simulations required to generate such samples are notoriously computationally



intensive to run. Fortunately, the introduction of parameterized neural networks (pNNs) [3, 4]
provides an elegant solution to such problems.

2. Improving parameterized neural networks
Parameterized neural networks [3, 4] are designed to exploit the domain knowledge of one or
more physics parameters, resulting in an architectural variation of the common neural network
design [5]. The physics parameter(s), like the mass of the hypothetical particle, is treated as
an additional input that is fed to the neural network along with the feature vectors. Let the
(scalar) physics parameter be m (since, in our particular case, it represents the signal mass
hypotheses), x the vector of particle’s feature, and θ a set of learnable weights (or neural
network’s parameters); a pNN can be defined as fθ(x,m), being a learnable function of the
physics parameter, m, whereas a canonical neural network would be denoted as fθ(x). The
dependence among fθ, x, and m is the core idea behind pNNs, that, in practice, is implemented
by a proper conditioning mechanism [6].

With such an elegant formulation, a single model (the pNN) is trained on all the data and so
on all signal mass hypotheses at once (in general, on all combinations of the physics parameters),
being an effective replacement for M independent classifiers, each trained on a single mass point.
In this way, the effort required for the entire workflow is now not a function of the number of
mass hypotheses, anymore. Indeed, there is no free lunch; there are practical challenges to
address, such as: (1) finding the best way to condition on the physics parameter, (2) how to
correctly assign the parameter to background events (since it is, in principle, well defined for
the signal only), and (3) how to correctly evaluate the pNN. Fortunately, if such problems are
correctly solved the pNN offers even more benefits compared to the classical approach, such as:
interpolation and extrapolation of intermediate and boundary values of the physics parameter,
and a better data-efficiency (since all the data is consumed by a single model, instead of training
multiple classifiers on subsets of the dataset), which usually leads to improved generalization.

2.1. Conditioning mechanisms
The conditioning operation can be applied to any kind of data (e.g. vectors, images) and
domains. It consists of altering the output of whatever neural network model (the conditional-
GAN [7] is a good example) as z, called the conditioning or task representation, varies. The
representation z can take various forms: an embedding, a one-hot encoded vector, or a single or
multi-dimensional discrete or continuous variable. Simple yet effective mechanisms are [6]:

• Concatenation-based conditioning: the physics parameter m (our mass) is first
concatenated along the last dimension (axis) of the input features x, and the result is
then passed through a linear layer. The overall operation is

z = W [x m] + b, (1)

where z is the conditioned representation, and (W, b) are the weights and biases parameters
of the linear combination1. The concatenation along the last axis is simply denoted by [·],
which, in TensorFlow [8], corresponds to tf.concat([x, m], axis=-1).

• Conditional biasing: it turns out that the concatenation-based conditioning can be
expressed in an equivalent form, in terms of element-wise addition (denoted by ⊕):

z = (Wm+ b)⊕ x, (2)

where the conditioning representation (m) is first expanded by a linear layer (whose output
dimension must match x) to yield a bias vector, which is then added to the inputs x.

1 In practice, such linear combination corresponds to the application of a Dense layer without activation function.



• Conditional scaling: an alternative mechanism to both concatenation and biasing, can
be built from element-wise multiplication (or Hadamard product, ⊙):

z = x⊙ (Wm+ b) (3)

This time the parameter is expanded to a scaling vector, which is then multiplied element-
by-element to the vector x.

2.2. The affine architecture
It is not yet clear when one of such mechanisms should be preferred. So, to avoid trying each one
at a time, we can design a novel affine-conditioning mechanism [6, 4] by combining biasing with
scaling, as depicted in figure 1. Such conditioning operations can be implemented as layers,

Figure 1. The affine-conditioning
mechanism: the physics parameter,
m, is first independently expanded
twice, by means of two linear lay-
ers, respectively to scaling s and
biasing b vectors, which are subse-
quently multiplied to the inputs, x,
and finally added to the resulting
vector. The resulting conditioned
representation, z, is yield as follows:
z = x⊙ s(m)⊕ b(m).

and exchanged together to easily build different neural network architectures. For example,
the Baldi’s pNN [3] makes use of concatenation-based conditioning to combine x with m, right
after the input layer, and the result of the conditioning is then subject to various non-linearities
until the sigmoid output. Another degree of freedom, when designing parametric architectures,
regards the point of the layer hierarchy at which is best to perform the conditioning: at the
beginning, right before the output, or in the middle? Intuitively, to make the conditioning
stronger we can think of applying the mechanism repeatedly, at multiple levels of the hierarchy.
This is how the affine architecture [4] is designed, applying the affine-conditioning on the mass
parameter after each non-linearity. In practice, the first conditioning is performed on a non-
linear combination of the input features (after the first Dense layer), then the output is subject
to another non-linearity and conditioned again, repeating this until reaching the output layer.

2.3. Assignment of the physics parameter
The mass feature (in general, the physics parameters) are only well defined for the signal samples.
This can be, for example, because the value is not meaningful when associated to background
events. Nonetheless, the assignment of the parameter to the background samples is necessarily
required to train the pNN at all. In practice, there are two general strategies to follow [4]:

(i) Identical distribution: the parameter for the i-th background event is assigned by
randomly sampling a value from the finite set M = {m1,m2, . . . ,mM} of unique signal
mass hypotheses, i.e., m(i) ∼ M. For a generic parameter, p, that follows a probability
distribution, Dp, we just sample from the same distribution: p(i) ∼ Dp.

(ii) Different distribution: in general terms, the idea here is to define a probability
distribution from the parameter, p, that is different from Dp, which is the original law that
p follows. Taking the mass parameter as an example, we can define a uniform distribution



that covers the entire mass range, i.e., U(m1,mM ). Also in this case, we sample to assign
the mass parameter: m(i) ∼ U(m1,mM ).

It should be noticed that if the parameter is differently distributed between signal and
background, as in the second strategy, information about the true class label can be leaked
to the model: this may cause an increase in classification performance due to learning from
spurious correlations, which should be avoided unless proper regularization is applied.

2.4. Balanced training procedure
To further improve our parametric models we can leverage the domain knowledge about our own
data. In general, our background events can belong to P different processes (in this particular
case, P = 1), and the physics parameter, if discrete2 or enumerable, can take at most M distinct
values. This results in P×M×C possible combinations of background process, parameter value,
and class labels (for binary classification, like our case, C = 2.) These possibilities allow us to
organize (or balance) the samples within each training mini-batch in multiple ways [4]:

• Class balance: The class labels (C) are balanced within each mini-batch, regardless the
signal and background processes. Considering two classes, we balance them by sampling
events such that half the batch represents the positive class (i.e., the signal), and the other
half with background samples.

• Signal balance: We build mini-batches such that there is an equal amount of signal events
for each distinct value of M , implying that each m ∈ M is present in a batch. In this case,
the batch size B = (M ×Bs) +Bb would contain a total of M ×Bs signal samples (where
Bs denotes the number of events to consider each time), and Bb background events.

• Background balance: An equal amount of background samples are allocated in a mini-
batch per process, P . This results in a batch size B = Bs + (Bb × P ), where Bs is the
proportion of the (unbalanced) signal, and Bb × P the total number of background events.
In this case, all the background processes are contained in a mini-batch.

• Full balance: The mini-batches are build considering an equal proportion of samples given
all the possible combinations C ×M × P . For two classes the batch size, B, is divided in
two balanced halves such that B = (Bs × M) + (Bb × P ), where Bs and Bb have to be
chosen such that Bs ×M and Bb × P are approximately equal.

Adopting the balanced training procedure can be helpful at mitigating the bias that arise from
class frequencies, especially if some of them are particularly more frequent than others.

3. Results
We conduct our evaluation on the HEPMASS-IMB [9, 4] dataset, a more challenging version of
HEPMASS [10, 3] in which a large portion of the training signal events have been removed to
create an imbalance among mass points, and between class labels as well. The dataset depicts
the search of an hypothetical particle X, at five mass points: 500, 750, 1000, 1250, and 1500
GeV. There are a total of 26 features (a combination of both low- and high-level variables) that
describe each event, plus the 27-th mass feature mX : by default a random value from the five
available have been assigned to the background events.

3.1. The significance ratio metric
The approximate median significance (AMS) [11, 12] is a formula used for hypothesis testing,
which can also provide insights about classification performance since it relates the amount
of true classified signal, st, with how much background events, bt, are retained for a given

2 If continuous, it can be, for example, binned to yield Nbins disjoint intervals.



classification threshold, t. The issue regards the dependency it has on the total number of signal
and background events contained in our dataset. Without any weighting, the scale of the AMS
of each mass points is different, therefore not comparable. For this reason, the significance ratio
[4] introduces a normalization constant that depends on the mass point, such that:

σratio(m) =
maxtAMS(t)

smmax/
√
smmax

, (4)

where the ratio smmax/
√
smmax represents the ideal significance value for the mass point m:

assuming a perfect classification scenario in which all the background is rejected, and all the
signal is correctly predicted (i.e., smmax). Dividing by the constant enables each σratio(m) to have
the same numerical scale for all mass points, m, allowing them to be comparable against each
other. Furthermore, the metric is normalized in [0, 1], providing also an intuitive interpretation
of classification performance where the best models approaches a significance ratio of 1.

3.2. Impact of conditioning mechanism
When designing pNNs the choice of the conditioning mechanism is an important one. In
particular, we evaluated the type (concatenation, biasing, scaling, and affine conditioning) and
the position, i.e. the place where the conditioning happens, such as: right after the input layer
(begin), placed after every non-linearity (all), and just before the output layer (end). Table 1
shows the results for two tasks: classification, and interpolation [4]. For both tasks we evaluated
the Area Under the Receiver Operating Characteristic and Precision-Recall curves (respectively
denoted by AUROC and AUPR), and the proposed significance ratio (σratio) but computed on
the best threshold value. As we can see, conditioning at the end usually leads to the worst
performance, whereas the biasing and affine conditioning are the best in both scenarios: the
latter also being more robust regardless the position at which it happens. Finally, concatenation
(at begin) attains competitive results.

All the models considered for comparisons have four layers, respectively with 300, 150, 100,
and 50 units (resulting in about 70k learnable parameters), with ReLU [13] activation and
a Dropout [14] probability of 25%. The minimization of the binary cross-entropy loss was
conducted by the Adam optimizer [15], with a learning rate of 5× 10−4, on a batch size of 1024.
The trainable parameters were initialized following the he_uniform scheme [16] (and zeros

for biases), and further regularized by an l2-penalty of 10−5 and 10−6 for weights and biases,
respectively. Finally, the physics parameter were assigned by following the identical distribution
strategy, and no mini-batch balancing occurred to isolate the contribution of the conditioning.

4. Conclusions
In this paper we discussed several design choices to improve parameterized neural networks: a
recent kind of classifier that is particularly promising for signal-background classification in HEP.
We assessed the impact of the conditioning mechanism, a crucial design choice, finding that (1)
although concatenation and biasing have an equivalent formulation, in practice performance are
expected to differ, and (2) that the affine conditioning yields, on average, the best and more
robust performance when facing both classification and interpolation tasks.

References
[1] S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the

LHC,” Phys. Lett. B, vol. 716, pp. 30–61, 2012.
[2] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for Exotic Particles in High-Energy Physics with Deep

Learning,” Nature Commun., vol. 5, p. 4308, 2014.
[3] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson, “Parameterized Neural Networks for

High-Energy Physics,” The European Physical Journal C, vol. 76, no. 5, pp. 1–7, 2016.



Table 1. Impact of conditioning mechanisms. For interpolation the missing signal mass
hypotheses are {750, 1000, 1250}. Best results are shown in boldface.

Conditioning Classification (%) Interpolation (%)

Type Position AUROC AUPR σratio AUROC AUPR σratio

Concat begin 93.09 92.20 88.84 89.20 88.13 85.67

Concat all 90.19 88.67 87.10 84.37 83.81 83.58

Concat end 88.45 87.58 83.40 70.93 72.57 71.90

Biasing begin 92.98 92.08 88.80 87.25 86.07 84.58

Biasing all 93.12 92.23 88.95 91.44 90.36 86.99

Biasing end 88.57 87.68 83.69 69.89 72.36 71.86

Scaling begin 93.01 92.10 88.74 85.42 85.53 82.35

Scaling all 92.93 91.99 88.73 87.95 86.80 84.81

Scaling end 92.03 90.76 87.64 87.12 86.84 83.84

Affine begin 92.41 91.54 88.14 90.34 88.98 86.21

Affine all 93.05 92.14 88.92 91.50 90.33 87.61

Affine end 91.98 90.79 87.45 86.78 86.40 83.97

[4] L. Anzalone, T. Diotalevi, and D. Bonacorsi, “Improving parametric neural networks for high-energy physics
(and beyond),” Machine Learning: Science and Technology, vol. 3, p. 035017, oct 2022.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.
[6] V. Dumoulin, E. Perez, N. Schucher, F. Strub, H. d. Vries, A. Courville, and Y. Bengio, “Feature-wise

Transformations,” Distill, 2018. https://distill.pub/2018/feature-wise-transformations.
[7] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” CoRR, vol. abs/1411.1784, 2014.
[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,

et al., “TensorFlow: A System for Large-scale Machine Learning,” in 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), pp. 265–283, 2016.

[9] L. Anzalone, T. Diotalevi, and D. Bonacorsi, “HEPMASS-IMB,” Apr. 2022.
https://doi.org/10.5281/zenodo.6453048.

[10] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson, “HEPMASS Dataset - UCI Machine
Learning Repository,” 2015. http://archive.ics.uci.edu/ml/datasets/HEPMASS.

[11] C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl, and D. Rousseau, “The Higgs Boson
Machine Learning Challenge,” in NIPS 2014 Workshop on High-energy Physics and Machine Learning,
pp. 19–55, PMLR, 2015.

[12] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic Formulae for Likelihood-based Tests of New
Physics,” The European Physical Journal C, vol. 71, no. 2, pp. 1–19, 2011.

[13] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA,
April 11-13, 2011 (G. J. Gordon, D. B. Dunson, and M. Dud́ık, eds.), vol. 15 of JMLR Proceedings,
pp. 315–323, JMLR.org, 2011.

[14] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to
prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(Y. Bengio and Y. LeCun, eds.), 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification,” in 2015 IEEE International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pp. 1026–1034, IEEE Computer Society, 2015.


