
Optimizing electron and photon reconstruction using

deep learning: application to the CMS

electromagnetic calorimeter (ECAL)

Davide Valsecchi1 for the CMS Collaboration
1 ETH Zurich

E-mail: davide.valsecchi@cern.ch

Abstract. The reconstruction of electrons and photons in CMS depends on topological
clustering of the energy deposited by an incident particle in different crystals of the
electromagnetic calorimeter (ECAL). These clusters are formed by aggregating neighbouring
crystals according to the expected topology of an electromagnetic shower in the ECAL. The
presence of upstream material (beampipe, tracker, and support structures) causes electrons and
photons to start showering before reaching the calorimeter. This effect, combined with the
3.8T CMS magnetic field, leads to energy being spread in several clusters around the primary
one. It is essential to recover the energy contained in these satellite clusters in order to achieve
the best possible energy resolution for physics analyses. Historically, satellite clusters have been
associated to the primary cluster using a purely topological algorithm which does not attempt to
remove spurious energy deposits from additional pileup interactions (PU). The performance of
this algorithm is expected to degrade during LHC Run 3 (started in 2022) because of the larger
average PU and the increasing levels of noise due to the ageing of the ECAL detector. New
methods are being investigated, which exploit state-of-the-art deep learning architectures like
Graph Neural Networks (GNN). These more sophisticated models improve the energy collection
and are more resilient to PU and noise. This contribution covers the results of the model
optimization, and the steps to deploy it in the CMS reconstruction sequence. The inference
performance is analyzed and strategies to improve it are described in this manuscript.

1. Introduction
The CMS [1] electromagnetic calorimeter (ECAL) [2] is a homogeneous calorimeter made of
75848 lead tungstate (PbWO4) scintillating crystals, located inside the CMS superconducting
solenoid magnet. It is made of a barrel part (EB) covering the region of pseudorapidity |η| < 1.48
with 61200 crystals and two endcaps (EE), which extend the coverage up to |η| < 3.0 with 7324
crystals each. Scintillation light is detected with avalanche photodiodes (APD) in the barrel
and vacuum phototriodes (VPT) in the endcaps. The ECAL is crucial for the identification and
reconstruction of photons and electrons, and the measurement of jets and of missing transverse
momentum. The electrons and photons are typically reconstructed up to |η| < 2.5, the region
covered by the tracker, while jets are reconstructed up to |η| < 3.0.

Several algorithms are stacked on top of each other to reconstruct electrons and photons
candidates from the measurement of scintillation light in each single crystal in the ECAL
detector [3]. A single electron or photon usually leaves more than one cluster of energy in the
ECAL detector. The electron, bending in the strong magnetic field of the CMS solenoid (3.8 T)

while passing through the Pixel and Tracker detectors, emits bremsstrahlung photons that will
leave a trace of small energy clusters in the ECAL detector near the main impact point, mostly
extended in the transverse R − ϕ plane. The photon, instead, is converted to electron-positron
pairs interacting with the several layers of the inner detectors of CMS, thus also depositing
multiple clusters of energy in ECAL. Therefore, in order to improve the energy resolution for
electrons and photons, an additional clustering algorithm is employed, which includes the energy
of secondary clusters to form SuperClusters (SC).

2. Effect on the reconstruction performance
The effect of the new algorithm, called DeepSC, on the electron and photon objects reconstructed
by CMS has been studied in detail using MC simulation [4, 5]. An energy resolution study [6]
is performed after retraining the dedicated electron and photon energy corrections, both for the
new algorithm and for the legacy one, called Mustache. The effect is analyzed using electrons
and photons candidates reconstructed by the Particle Flow algorithm [7], which includes the
information from the tracker. The energy resolution is computed by fitting the ratio between the
calibrated energy, extracted with the reconstruction algorithm, and the generator level particle
energy. A Cruijiff function is employed as the fit model.

0.0 0.5 1.0 1.5 2.0 2.5
| Gen|

0.8

1.0

1.2

D
ee

pS
C
/

M
us

t 14 TeVCMSSimulation Preliminary

Ecalib/Egen Electron (ECAL + Tracker)

EGen
T [GeV]

[10, 25]
[25, 40]

[40, 60] [60, 100]

20 40 60 80 100
EGen

T [GeV]
0.8

1.0

1.2

D
ee

pS
C
/

M
us

t

Ecalib/Egen Electron (ECAL + Tracker)

| Gen|
[0, 1] [1, 1.4442] [1.566, 2.5]

50 55 60 65 70 75
PU

0.8

1.0

1.2

D
ee

pS
C
/

M
us

t

Ecalib/Egen Electron (ECAL + Tracker)

| Gen|
[0, 1] [1, 1.4442] [1.566, 2.5]

0.0 0.5 1.0 1.5 2.0 2.5
| Gen|

0.8

1.0

1.2

D
ee

pS
C
/

M
us

t 14 TeVCMSSimulation Preliminary

Ecalib/Egen Photon (ECAL + Tracker)

EGen
T [GeV]

[10, 25]
[25, 40]

[40, 60] [60, 100]

20 40 60 80 100
EGen

T [GeV]
0.8

1.0

1.2

D
ee

pS
C
/

M
us

t

Ecalib/Egen Photon (ECAL + Tracker)

| Gen|
[0, 1] [1, 1.4442] [1.566, 2.5]

50 55 60 65 70 75
PU

0.8

1.0

1.2

D
ee

pS
C
/

M
us

t

Ecalib/Egen Photon (ECAL + Tracker)

| Gen|
[0, 1] [1, 1.4442] [1.566, 2.5]

Figure 1: Improvement in the energy resolution for electrons (left) and photons (right) from the
DeepSC algorithm with respect to the Mustache one (σDeepSC/σMust) at the final reconstruction
level. Electrons on the left, photons on the right. [6]

The tracker information is crucial to improve the energy resolution of electrons at low
energy, but the new algorithm brings an improvement also at higher energies where the ECAL
contribution is dominant, specially in the 1.0 < |η| < 1.5 region. Photons, which do not have
information from the tracker, are consistenly improved. The DeepSC algorithm makes the
resolution flatter versus the PU, also at the global event description level.

3. Implementation in the CMS software
The DeepSC algorithm has been implemented in the CMS reconstruction sequence replacing
transparently the legacy one. The evaluation proceeds in steps, separately for each event:

3.1. Window preparation
• detector windows are built around each cluster with transverse energy ET > 1 GeV (upper
left panel in Fig. 2), called seed.

• the seed is connected to all the clusters in each window to form a graph

• Input features are computed for each cluster from basic quantities. The position and energy
of each crystal forming the clusters is also used.

Figure 2: Schema of the DeepSC algorithm evaluation
steps in the CMS reconstruction software

3.2. Model evaluation
• The TensorFlow model is evalu-
ated on batches of detector win-
dows: the output is the probabil-
ity of each edge between the seed
and the nearby clusters.

• The complete graph is traversed,
starting from the highest energy
seed, to solve overimpositions and
collect the final SC (bottom right
in Fig. 2),

• a final cut of ESC
T > 4 GeV is

applied to remove SuperCluster
formed mainly by detector noise
and very low energy PU (bottom
left in Fig. 2).

3.3. Evaluation dimensions
The number of clusters in each window, and their number of crystals (rechits) determine the
amount of data evaluated by the model at each iteration. Figure 3 (left) shows their distribution
in a sample of t̄t Monte Carlo (MC) events, simulated under LHC Run 3 conditions, with an
average PU of 65. Figure 3 (center) shows the cumulative distribution of the number of windows,
accumulated over all the events, with the number clusters and maximum number of rechits per
window over a threshold. The model needs to be evaluated with a predefined zero-padded input
size: the distribution of cluster and rechits falls exponentially, but it has a long tail of window
with up to 60 clusters or 60 rechits. This poses a challenge for the inference time of the model
in the CMS software.

4. Inference time optimization
4.1. Input tensors zero-padding size
CPU time can be saved by executing the inference with two models with different zero-padding
size, one prepared for a small number of clusters and rechits input, and one for the most inclusive
case (60 clusters, 60 rechits). A single model has to be trained, then it can be exported with
different internal tensors dimensions. The smaller model, much faster CPU wise, is executed
for most of the window in each event, wherease the larger model is needed only sparsingly.
The average fraction of windows per event which have to be evaluated with the largest model
is shown in the Figure 3 (right), for different thresholds of number of clusters or rechits. By

Figure 3: (Left) Number of clusters and maximum number of rechits in a detector window
observed in a t̄tMonte Carlo sample. (Center) Cumulative distribution of the number of windows
(accumulated over all the events) with more than x number of clusters or more than x maximum
number of rechits. (Right) Average fraction windows per event with more than x clusters or x
rechits.

choosing 15 cluster and 20 rechits as maximum dimension for the small model, on average only
10% of the windows in an event will be evaluated with the slower model.

4.2. Model architecture optimization
The architecture of the DeepSC model consists of three steps: encoding (or graph building),
graph elaboration, and decoding. The rechits information are preprocessed with a dedicated
convolution layer before concatenating their information to the clusters basic features. Ref.[5]
describes the model architecture details. Different variations of the same network schema have
been tested to improve the performance time, while keeping the physics performance unchanged:

• Default: initial best candidate ∼ 390k weights. Includes a Graph Convolution Network
(GCN) on rechits and one on clusters, followed by self-attention layers.

• Simpler rechits layer: Removed GCN layer on rechits to improve the timing and slimmed
the model. (∼ 170k weights)

• Without rechits layer: Removed completely the rechits inputs and increased the capacity
of the other layers (two versions, ∼ 165k and ∼ 370k weights).

4.3. Tensorflow inference time comparison
The inference time cost of the different models has been evaluated with the Tensorflow profiler
on a single CPU thread process, to mimic the most common CMS computing environment,
where the tensorflow internal threading is switched off. The models are profiled with small and
large zero-padding dimensions, with a batch size of 32 windows. Figure 4 on the left shows the
comparison of the inference time for the different models flavours described above.

The Graph Convolution Network on rechits is an expensive operation in the default model:
a large input dimension makes the default model very slow. On the contrary, the model with
simplified rechits layer is still fast also with a large input size. As expected, the model without
rechits layer is the fastest.

4.4. Dynamic zero-padding reconstruction
The mechanims to dynamically choose which model is run during inference, depending on the
window inputs size, has been implemented in the CMS software. Figure 4 on the right, shows the
fraction of the time in the standard CMS reconstruction sequence used by the DeepSC algorithm

Figure 4: (Left) Inference time for different zero-padding dimensions and different model
architectures in TensorFlow. (Right) Inference time of the DeepSC algorithm in the CMS
reconstruction software: comparison between fixed or dynamic zero-padding strategy

with a fixed or dynamical zero-padding strategy on a t̄t MC sample. The plot shows in blue
the fraction of CMS reconstruction time used if only a single model with the maximum zero-
padding (60 clusters, 60 rechits) is always run, whereas in orange if the dynamic zero-padding
strategy is activated, with a threshold to 15 clusters and 20 rechits for the small model [8].
The improvement in speed is very large, up to a factor of 10, for the default and simplified
rechits layer models. For the models which do not use the rechits input, the speedup is smaller
since they do not contain the expensive operations on the rechits collection of each cluster. The
threshold to use can be further tuned to reach the optimal improvement.

5. Conclusion and next steps
The inference performance of the DeepSC model has been studied in a realistic scenario on
t̄t Run3 MC. Different strategies to improve the timing have been explored, both on the side
of the model architecture and on the inference mode one. The complexity of the model can
be reduced with negligible physics performance changes (and with a proper hyper-parameters
optimization) to strongly decrease the running time. A speedup of 10 times can be easily reached
by implementing a dynamic zero-padded strategy with two models tailored for small and large
windows.

References
[1] Chatrchyan S et al. (CMS) 2008 JINST 3 S08004
[2] 1997 CMS: The electromagnetic calorimeter Tech. Rep. CERN-LHCC-97-33, CMS-TDR-4 URL

https://cds.cern.ch/record/349375

[3] Sirunyan A M et al. (CMS) 2021 JINST 16 P05014 (Preprint 2012.06888)
[4] 2021 ECAL SuperClustering with Machine Learning Tech. Rep. CERN-CMS-DP-2021-032 URL

https://cds.cern.ch/record/2792321

[5] Valsecchi D and for the Collaboration C 2023 Journal of Physics: Conference Series 2438 012077 (Preprint
2204.10277)

[6] 2022 ECAL SuperClustering with Machine Learning - Corrected energy performance Tech. Rep. CERN-CMS-
DP-2022-032 URL https://cds.cern.ch/record/2826227

[7] Sirunyan A M et al. (CMS) 2017 JINST 12 P10003 (Preprint 1706.04965)
[8] 2022 ECAL DeepSC: Optimization of the DeepSC model inference strategy for reconstruction speedup Tech.

Rep. CERN-CMS-DP-2022-058 URL https://cds.cern.ch/record/2841537

