
Equivariant Graph Neural Networks for Charged

Particle Tracking

Daniel Murnane1, Savannah Thais2, Ameya Thete3

1 Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2 Data Science Institute, Columbia University, New York, NY 10027, USA
3 Department of Physics, BITS, Pilani – KK Birla Goa Campus, Zuarinagar, Goa 403726,
India

E-mail: dtmurnane@lbl.gov

Abstract. Graph neural networks (GNNs) have gained traction in high-energy physics (HEP)
for their potential to improve accuracy and scalability. However, their resource-intensive nature
and complex operations have motivated the development of symmetry-equivariant architectures.
In this work, we introduce EuclidNet, a novel symmetry-equivariant GNN for charged particle
tracking. EuclidNet leverages the graph representation of collision events and enforces rotational
symmetry with respect to the detector’s beamline axis, leading to a more efficient model. We
benchmark EuclidNet against the state-of-the-art Interaction Network on the TrackML dataset,
which simulates high-pileup conditions expected at the High-Luminosity Large Hadron Collider
(HL-LHC). Our results show that EuclidNet achieves near-state-of-the-art performance at small
model scales (< 1000 parameters), outperforming the non-equivariant benchmarks. This study
paves the way for future investigations into more resource-efficient GNN models for particle
tracking in HEP experiments.

1 Introduction

In recent years there has been a sharp increase in the use of graph neural networks (GNNs)
for high-energy physics (HEP) analyses [1]. These studies have demonstrated that GNNs have
the potential to deliver large improvements in accuracy, and can easily scale to sizable volumes
of data. However, many of these architectures either involve a large number of parameters or
complex graph operations and convolutions, which make GNNs resource-intensive and time-
consuming to deploy. Many real-world datasets, including those from HEP experiments, display
known symmetries, which can be used to construct alternatives to computationally expensive
unconstrained architectures. By exploiting the inherent symmetry in a given problem, we can
restrict the function space of neural networks to relevant candidates by enforcing equivariance
with respect to transformations belonging a certain symmetry group. This approach has a two-
fold benefit: incorporating equivariance introduces inductive biases into the neural network, and
more often than not, equivariant models are more resource-efficient than their non-equivariant
counterparts [2, 3].
In this work, we introduce a new architecture of symmetry-equivariant GNNs for charged
particle tracking. Using a graph representation of a collision event, we propose EuclidNet,
which scalarizes input tracking features to enforce rotational symmetry. In particular, given
the detector’s symmetry around the beamline (z) axis, we develop a formulation of EuclidNet
equivariant to the SO(2) rotation group. Benchmarked against the current state-of-the-art

(SoTA) Interaction Network, EuclidNet achieves near-SoTA performance at small model sizes.
We explore the out-of-distribution inference performance of EuclidNet and InteractionNet in
order to provide an explanation for the behavior of model performance versus model size. As
such, we reveal hints not only as to the upper ceiling on fully-equivariant models, but the
symmetries learned by non-equivariant models. The code and models are publicly available at
https://github.com/ameya1101/equivariant-tracking.

2 Theory and Background

In this section, we introduce the concept of symmetry-group equivariance and provide a short
introduction to the theory of graph neural networks.

2.1 Equivariance

Formally, if Tg : X → X is a set of transformations on a vector spaceX for an abstract symmetry
group g ∈ G, a function ϕ : X → Y is defined to be equivariant to g if there exists an equivalent
set of transformations on the output space Sg : Y → Y such that:

ϕ(Tg(x)) = Sgϕ(x) (2.1)

A model is said to be equivariant to a group G if it is composed of functions ϕ that are equivariant
to G. In this work, we limit our discussion to rotational equivariance corresponding to the SO(2)
group. As an example, let x = (x1,x2, · · · ,xM) be a set ofM points embedded in n−dimensional
space, and ϕ(x) = y ∈ RM×n be the transformed set of points. For an orthogonal rotation matrix
Q ∈ Rn×n, ϕ is equivariant to rotations if Qy = ϕ(Qx).

2.2 Graph Neural Networks

Consider a graph G = (V,E) with nodes vi ∈ V and edges eij ∈ E. A graph neural network is
a permutation-invariant deep learning architecture that operates on graph-structured data [4].
A GNN commonly consists of multiple layers, with each layer performing the graph convolution
operation, which is defined as [5]:

mij = ϕe(h
l
i,h

l
j , aij) (2.2)

mi =
∑

j∈N (i)

mij (2.3)

hl+1
i = ϕh(h

l
i,mi) (2.4)

where hl
i ∈ Rk is the k-th dimensional embedding of node vi at layer l. aij are edge attributes.

N (i) is the set of neighbors of node vi. Finally, ϕe and ϕh are edge and node operations which
are approximated by multi-layer perceptrons (MLPs). mij are called messages that are passed
between nodes vi and vj .

3 Network Architecture

In this section, we describe the architecture of EuclidNet. As described in Figure 1, EuclidNet
is constructed by stacking Euclidean Equivariant Blocks (EEB) along with some encoding and
decoding layers. The architecture of EuclidNet closely follows that of LorentzNet presented in
[6]. In this section, ϕ(a, b, . . . , f) implies that the quantities a through f are concatenated before
being passed to ϕ.

Input layer. The inputs to the network are 3D hit positions. For the SO(2) group, scalars are
the z−coordinate of the hit position, while the 2D coordinates form the vectors. The scalars

https://github.com/ameya1101/equivariant-tracking

are projected to an embedding space using an embedding layer before being passed to the first
equivariant block.

Figure 1: (left) The structure of the Euclidean Equivariant Block (EEB). (right) The network
architecture of EuclidNet.

Euclidean Equivariant Block. Following convention, we use hl = (hl1, h
l
2, . . . , h

l
N) to denote

node embedding scalars and xl = (xl1, x
l
2, . . . , x

l
N) to denote coordinate embedding vectors in

the l−th EEB layer. x0 corresponds to the hit positions and h0 corresponds to the embedded
input of scalar variables. The message ml

ij to be passed is constructed as follows:

ml
ij = ϕm

(
hli, h

l
j , e

l
ij , ψ(∥xli − xlj∥2), ψ(⟨xli, xlj⟩)

)
(3.1)

elij = ϕe

(
ψ(∥xli − xlj∥2), ψ(⟨xli, xlj⟩), el−1

ij

)
(3.2)

where ϕm(·) is a neural network and ψ(·) = sgn(·) log(|·|+ 1) normalizes large numbers from
broad distributions to ease training. The input to ϕm also contains the Euclidean dot product
⟨xli, xlj⟩. The Euclidean distance ∥xli − xlj∥2 between hits is an important feature and we include

it for ease of training. elij is an edge significance weight learnt by an MLP.
We use an Euclidean formulation of the dot product attention from [6] as the aggregation
function, which is defined as:

xl+1
i = xli + c

∑
j∈N (i)

ϕx(m
l
ij) · (xli − xlj) (3.3)

where ϕx(·) ∈ R is a scalar function modeled by an MLP. The hyperparameter c is introduced
to control the scale of the updates. The scalar features, hli, are updated as:

hl+1
i = hli + ϕh

hli, ∑
j∈N (i)

ml
ij

 (3.4)

Decoding layer. After L stacks of EEBs, we decode the node embedding hL =
(hL1 , h

L
2 , . . . , h

L
N). Message passing ensures that the information contained in the vector

embeddings is propagated to scalars, therefore it is redundant to decode both. A decoding
block with three fully connected layers, followed by a softmax function is used to generate a
truth score for each track segment.

4 Results

4.1 Dataset

In this study, we test the developed tracking models on the TrackML dataset, which is a
simulated set of proton-proton collision events developed for the TrackML Particle Tracking
Challenge [7]. Events are generated with 200 pileup interactions on average, simulating the
high pileup conditions expected at the HL-LHC. Each event contains three-dimensional hit
positions and truth information about the particles that generated them. In this work, we
limit our discussion to the pixel layers only which consist of a highly-granular set of four barrel
and fourteen endcap layers in the innermost region. Each event’s tracker hits are converted
to a hitgraph through an edge construction algorithm. In addition to transverse momentum,
noise, and same-layer filters to modulate the number of hits, graph edges are also required to
satisfy constraints on certain geometrical quantities. In this study, we use the geometric graph
construction strategy from [8] to generate graphs, with pmin

T = 1.5 GeV for each event in the
dataset.

4.2 Experiments

We train EuclidNet and the Interaction Network for three different values of hidden channels:
8, 16, and 32. The results obtained on the TrackML dataset are summarized in Table 1. We
evaluate the models using the Area Under the ROC curve (AUC), which is a commonly used
metric in classification problems. We also report the number of model parameters, as well as
the purity and efficiency of the resulting event graphs.

Table 1: Performance comparison between EuclidNet and the Interaction Network (IN) on the
TrackML dataset. The results for EuclidNet and IN are averaged over 5 runs

Nhidden Model Params AUC Efficiency Purity

8
EuclidNet 967 0.9913 ± 0.004 0.9459 ± 0.022 0.7955 ± 0.040
InteractionNet 1432 0.9849± 0.006 0.9314± 0.021 0.7319± 0.052

16
EuclidNet 2580 0.9932± 0.003 0.9530± 0.014 0.8194 ± 0.033
InteractionNet 4392 0.9932± 0.004 0.9575 ± 0.019 0.8168± 0.073

32
EuclidNet 4448 0.9941± 0.003 0.9547± 0.019 0.9264± 0.023
InteractionNet 6448 0.9978 ± 0.003 0.9785 ± 0.022 0.9945 ± 0.043

For small model sizes, EuclidNet easily outperforms the unconstrained Interaction Network. We
see that rotational symmetry is approximately obeyed in the detector geometry as simulated in
the TrackML dataset (the ”Generic Detector”). Using this symmetry appears, to first order,
to produce an accurate pair-classification algorithm. However, given a larger latent space, the
performance assuming this symmetry plateaus. At that point, the unconstrained network is
more performant. We initially hypothesized that there are non-symmetric components of the
simulation, for example material and magnetic field inhomogeneities. To study this possibility,
we train both models on a set of rotations of the dataset by θ ∈ [0, π/4, π/2, 3π/4, π], and
run inference of each of these instances across the set of rotated datasets. In this way, we can
capture whether the unconstrained network is learning a function specific to that orientation of

Figure 2: The AUC at inference time plotted as a function of rotations in the input space by an
angle θ for models trained on a set of rotations of the dataset by θ ∈ [0, π/4, π/2, 3π/4, π] for
(left) EuclidNet and (right) the Interaction Network calculated over 5 independent inference
runs.

the detector’s material and magnetic field. The results of this study are summarized in Figure
2.
In Figure 2, we observe that both the SO(2)-equivariant EuclidNet and the Interaction Network
are robust to rotations in input space, irrespective of which set of rotations of the dataset the
model was trained on. The general trend observed in Table 1 is also replicated here, with
models having a larger latent space producing larger AUC scores. Although these results are
inconclusive to fully explain the unconstrained network’s superior performance, we posit that
they might be a symptom of the dataset’s inherent approximate rotational symmetry. If the
dataset were only “roughly” rotationally symmetric, then a less expressive EuclidNet would not
be able to completely match the approximate symmetry of the event, and would outperform the
IN only at latent space sizes that are not sufficient to capture the complete symmetry landscape.
However, given a large enough latent space, an unconstrained network such as the IN will have
no problems learning the approximate symmetry of the problem. In the future, an accurate
study to determine the actual symmetry learnt by both EuclidNet and the IN is required to
ascertain the cause for this behaviour.

5 Conclusions and Future Work

In this study, we have presented EuclidNet — a Euclidean rotation-equivariant GNN for the
particle tracking problem. The SO(2)-equivariant model offers a marginal improvement (AUC
= 0.9913) over the current SoTA benchmark (AUC = 0.9849) at small model scales (< 1000
parameters). However, for the particle tracking problem, we find that an unconstrained model
still outperforms an equivariant architecture at larger model sizes. More work is needed to
concretely establish the reasons for this result. Possible future directions include studying
the problem’s equivariance and identifying non-equivariant facets, if they exist, as well as
investigating the quality of the learnt symmetry. However, if the dataset inherently contains
non-equivariant features, any symmetric model will always underperform. In this case, models
which relax the strict constraints imposed by symmetry-following architectures might be able
to learn the non-equivariant aspects of the tracking dataset.

Acknowledgements

This work was supported by IRIS-HEP through the U.S. National Science Foundation under
Cooperative Agreement OAC-1836650. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231.

Appendix A Training Details

We use the binary cross-entropy loss function for both EuclidNet and the Interaction Network.
All models are optimized using the Adam optimizer [9] implemented in PyTorch with a learning
rate η = 1 × 10−3 and momentum coefficients (β1, β2) = (0.9, 0.999). The learning rate is
decayed by 0.3 every 100 epochs. Both are trained on a single NVIDIA A100 GPU each for
a 200 epochs using early stopping with a patience of 50 epochs. Total training time for both
models is typically 2 hours.

Appendix B Equivariance Tests

We also test the equivariance of EuclidNet and find that it is indeed equivariant to SO(2)
transformations up to floating-point numerical errors. For a given transformation R ∈ SO(2),
we compare Rθϕ(x) and ϕ(Rθx), where x are the hit coordinates and ϕ(·) is a EuclidNet instance.
In Figure B1 we plot the relative deviation, defined as

ε(θ) =
⟨ϕ(Rθx)⟩ − ⟨Rθϕ(x)⟩

⟨Rθϕ(x)⟩
(B.1)

where ⟨·⟩ is the mean computed over 500 tracking events in the test dataset. We find the relative
deviation from rotations to be < 10−8.

Figure B1: Relative deviation of the output node vector representations to rotations around the
beamline (z-axis).

References

[1] Thais S, Calafiura P, Chachamis G, DeZoort G, Duarte J, Ganguly S, Kagan M, Murnane
D, Neubauer M S and Terao K 2022 2022 Snowmass Summer Study (Preprint 2203.12852)

[2] Satorras V G, Hoogeboom E and Welling M 2021 International Conference on Machine
Learning (PMLR) pp 9323–9332

2203.12852

[3] Bogatskiy A et al. 2022 2022 Snowmass Summer Study (Preprint 2203.06153)

[4] Kipf T N and Welling M 2016 (Preprint 1609.02907)

[5] Gilmer J, Schoenholz S S, Riley P F, Vinyals O and Dahl G E 2017 International conference
on machine learning (PMLR) pp 1263–1272

[6] Gong S, Meng Q, Zhang J, Qu H, Li C, Qian S, Du W, Ma Z M and Liu T Y 2022 JHEP
07 030 (Preprint 2201.08187)

[7] Amrouche S et al. 2019 The Tracking Machine Learning challenge : Accuracy phase (Preprint
1904.06778)

[8] DeZoort G, Thais S, Duarte J, Razavimaleki V, Atkinson M, Ojalvo I, Neubauer M and
Elmer P 2021 Comput. Softw. Big Sci. 5 26 (Preprint 2103.16701)

[9] Kingma D P and Ba J 2014 (Preprint 1412.6980)

2203.06153
1609.02907
2201.08187
1904.06778
2103.16701
1412.6980

