
Scaling MadMiner with a deployment on REANA

Irina Espejo1, Sinclert Pérez2, Kenyi Hurtado3, Lukas Heinrich4 and
Kyle Cranmer5

1 New York University
2 Shopify
3 University of Notre Dame
4 Technische Universität München
5 University of Wisconsin–Madison

E-mail: iem244@nyu.edu

Abstract. MadMiner is a python package that implements a powerful family of multivariate
inference techniques that leverage matrix element information and machine learning. This
multivariate approach neither requires the reduction of high-dimensional data to summary
statistics nor any simplifications to the underlying physics or detector response. In this paper,
we address some of the challenges arising from deploying MadMiner in a real-scale HEP analysis
with the goal of offering a new tool in HEP that is easily accessible.

The proposed approach encapsulates a typical MadMiner pipeline into a parametrized
yadage workflow described in YAML files. The general workflow is split into two yadage sub-
workflows, one dealing with the physics simulations and the other with the ML inference. After
that, the workflow is deployed using REANA, a reproducible research data analysis platform
that takes care of flexibility, scalability, reusability, and reproducibility features. To test the
performance of our method, we performed scaling experiments for a MadMiner workflow on the
National Energy Research Scientific Computer (NERSC) cluster with an HT-Condor back-end.
All the stages of the physics sub-workflow had a linear dependency between resources or wall
time and the number of events generated. This trend has allowed us to run a typical MadMiner
workflow, consisting of 11M events, in 5 hours compared to days in the original study.

1. Introduction
Searches for New Physics at the LHC require the use of complex event simulators in order
to get precision measurements over subtle signals. In recent years, several Machine Learning
(ML) applications in High Energy Physics (HEP) have shown promise of increased precision
and scalability over traditional methods [5]. A notable example is MadMiner [4], a family
of simulation-based inference techniques. These techniques bypass traditional dimensionality
reduction by using ML to construct a surrogate for the intractable likelihood, thereby increasing
precision. Hence, it would be beneficial to expand the application of MadMiner to a broader
range of analyses. Besides, the LHC undergoes future upgrades, and the deployment of
MadMiner at scale becomes increasingly important.

However, there are two main challenges for non-expert users to get started with MadMiner:
first, the MadMiner pipeline generates simulator data on the fly with complicated software
dependencies, and second, the pipeline involves several steps, making progress difficult for non-
experts.

To address these challenges, we propose using REANA [13], a research data analysis platform
that is containerized by nature and thus solves the issue of software dependencies. Additionally,
REANA makes analysis reproducible by design, which is crucial in the context of ML in HEP,
where reproducibility and plug-and-play compatibility with other ML tools are necessary due to
the modular nature of simulation pipelines. Here we present a deployment of MadMiner using
REANA with the following properties:

• It has a shallow learning curve after reading the MadMiner literature.

• It is modular so that each step or sub-workflow can be run independently.

• It has interactive access to output data and plots.

• It is parameterized, that is, the user can tweak inputs (parameters and files) without
dealing with source code.

• It is reproducible and reusable.

• It scales with respect to the generation of events in the steps that involve physics simulators.

1.1. MadMiner
MadMiner [1, 2, 3] is a python package that implements a powerful family of simulation-
based inference techniques for High Energy Physics analysis. Two types of analysis are
ubiquitous at the LHC: measurements of a physical variable and searches for New Physics. Both
analyses require precision when analyzing high-dimensional data generated by the experiment
and complex simulators. These complex simulators produce a computationally intractable
(marginal) likelihood both for maximum likelihood estimation (measurement) and hypothesis
testing (searches). There are different traditional approaches to this issue [7, 12], but all involve
dimensionality reduction of the data to a low-dimensional space. The training data consist of an
augmented dataset extracted from the latent states of the simulator. MadMiner automates all
the steps necessary to apply simulation-based inference techniques and unites them in a pipeline.

1.2. REANA
REANA [13] is a research data analysis platform built so that pipelines can be systematically
reproduced and reused. Researchers encapsulate a research analysis by writing declarative
yaml-based files. Those files describe a DAG workflow and the computations to execute at
every step. To date, there is no standard approach to the reproducibility and sharing of ML
models and pipelines in HEP, making REANA a valuable tool in this regard. REANA consists
of a REANA client and a REANA cluster. The client is the front-end utility that offers the
user an easy-to-use command line interface. The user loads the yaml files and selects a back-
end. Automatically, REANA launches jobs in the back end, runs the workflow, and stores
output files. The cluster component deals with the distribution of remote jobs. Different micro-
services manage container-based computations submitted by the client. Supported back-ends
for REANA include Kubernetes, Slurm, and HT-Condor.

2. Workflow specification
The source code of the workflow can be found in Ref. [8]. The workflow topology is coded
using yadage [6], a yaml-based workflow language. Each stage of the workflow executes code
written in bash and Python where the MadMiner functionality is provided by the MadMiner
package in Ref. [11]. The workflow is divided into two parts: one dealing with Physics
computations (in Ref. [10]), and the other one with Machine Learning computations (in Ref.
[9]). Containerization of dependencies was done using two Docker images, one containing
Machine Learning dependencies (PyTorch) and another one containing the following physics

dependencies: MadGraph aMC v2.9.4, Pythia8, LHAPDF and Delphes 3. Each of the sub-
workflows can be executed independently on a local computer using yadage. This way, users
can re-run specific parts of a sub-workflow locally and study them more carefully. Additionally,
the ML sub-workflow supports MLFlow, an ML platform offering multiple tools to keep track of
ML metrics across experiment runs.

Physics sub-workflow
Inputs to this sub-workflow are parameter information, benchmark information, observables, and
cuts. Users can change the physics signal by changing the cards located in this sub-workflow.
The following tasks, in order, form the DAG of the physics sub-workflow.

• Configure: Load inputs and transform them into MadMiner objects.

• Generate: Generation in parallel of file configurations ready to be run by simulators.

• Pythia: Simulations in parallel of collisions with MadGraph and Pythia, as well as
bookkeeping.

• Delphes: Lightweight simulation in parallel of collisions passing through the detector and
bookkeeping.

• Combine: Partial combination of data files output by Delphes.

• Multi-combine: Complete combination of data files.

The following tasks, in order, form the DAG of the machine learning sub-workflow.

ML sub-workflow
Inputs to this sub-workflow are the type of estimator of the likelihood ratio (parametrized or
double-parametrized), sampling choices, and Neural Network architecture.

• Sampling: Pre-processing of data from Delphes into training data with tasks like
unweighting of events and data augmentation using the joint score.

• Training: Training of Multilayer Perceptron with input architecture to estimate likelihood
ratio.

• Evaluating: Evaluation on test data of likelihood ratios or score estimator and limit
setting.

• Plotting: Computation of diagnostic metrics and result plots using evaluation data.

The Physics workflow is structured as a map-reduce to enhance the scalability of the event
generation step. We observed that one map-reduce implementation could not go further than
1M events without a significant increase in wall time. That is why a partial and a complete
combine step exists. The multi-combine step is the “reduce” of a “map” that is also a map-
reduce. The number of times map-reduce is repeated in “map” is an input by the user called
n procs per job.

3. Workflow deployment
The MadMiner workflow can be deployed locally and on a cloud-based system. Local deployment
is controlled by yadage; this way, the researcher can run small-scale experiments with full control
for debugging. Remote deployment uses REANA as the execution coordinator. The researcher
can execute the workflow either at a high level, with a Makefile provided in the source code,
or the reana-client CLI. REANA provides an instance to monitor remote job deployment
from the researcher to the local browser. The workflow was successfully deployed at various
HPCs, with the one deployed at the National Energy Research Scientific Computing Center
(NERSC) being the most computationally intensive. This REANA instance is based on an

HT-Condor back-end that generated 11 million simulation events in 5h 8 min. Out of 11M
events, 1.1M were signal, and 10M were background before re-weighting. Compared to the
original study, Ref. [4] generated 10 million events, and subsequent training spanned days. Out
of 10M, 1.5M were signal, and the rest were background. All parameters, observables, cuts,
and training configurations were similar in both cases. Regarding scalability, experiments were
performed in two REANA instances, one at CERN using Kubernetes and the other instance
at NERSC. In Fig. 1, the NERSC instance shows linear scaling for the total execution time
with respect to an exponential increase in events generated up to a little over 107 events. The
CERN instance shows sub-optimal performance with respect to the ideal, indicating that a
bottleneck in the distribution of resources for jobs was taking place. Both facilities had different
resources, demand, and allocation policies, and at the time of the experiments at CERN in
2020-21, that instance was in development. The experiments we performed at CERN helped
with the development, making later experiments at NERSC more robust.

105 106 107 108

events (signal+bkg)

101

102

co
m

pl
et

io
n

tim
e

(m
in

) wor
se

be
tte

r

Scalability of MadMiner workflow
CERN (Kubernettes)
NERSC (HTCondor)
O(n) CERN ideal
O(n) NERSC ideal

Figure 1. The plot compares the execution time of the MadMiner workflow as the number of
Monte Carlo events generated increases. The study is carried out using two REANA cluster
instances, one located at CERN that uses Kubernetes and the other located in NERSC that uses
HT-Condor. Dashed lines represent ideal scalability; that is, the back end is able to distribute
jobs efficiently among its resources as the number of jobs exponentially increases.

Figure 2. Diagram showing all the steps of a scaled-down workflow encapsulating a MadMiner
pipeline. It starts with a configuration step that is followed by highly parallelizable simulation
steps. Each of the upper black squares corresponds to a full mini-workflow that, in its turn,
further parallelizes the MadGraph, Pythia, and Delphes steps. In a real-world experiment, this
part would be replicated further to the right. After those, there is a combine step which is the
principal bottleneck of the pipeline; this step collects all data from simulations and prepares
it for training. The bottom black square corresponds to the ML sub-workflow where a Neural
Network fits data coming from the physics sub-workflow. Finally, the workflow runs the inference
and plotting steps that output results to the user.

4. Conclusion
This paper presents a way of leveraging REANA’s modular and scalable properties to run
MadMiner pipelines. The deployment facilitates the use of machine learning to overcome
likelihood intractability and increase precision in HEP searches. With this example, HEP
researchers can now use MadMiner for their own analysis without the need for extensive coding
or managing dependencies. This deployment is highly customizable, allowing users to change
the number of events generated, observables and cuts, neural network architecture, and ways
of approximating the likelihood with a neural network. Additionally, the deployment outputs
are easily accessible on a REANA instance, and the deployment performs optimally in terms
of scalability on the NERSC (HT-Condor) instance. The scalability experiments contributed to
the development and benchmarking of the REANA cluster. In the future, it would be useful to
provide support for Slurm as a back-end, which is commonly used on HPCs and at CERN.

Acknowledgments
This work was supported by the National Science Foundation under Cooperative Agreement
OAC-1836650. IE is supported by the National Science Foundation under NSF Award 1922658.
SP, IE, and KC are supported by OAC-1841471. KH is also supported by OAC-1841448.
LH is supported by the Excellence Cluster ORIGINS, which is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC-2094-390783311.

References
[1] Johann Brehmer, Kyle Cranmer, Irina Espejo, Felix Kling, Gilles Louppe, and Juan Pavez. Effective LHC

measurements with matrix elements and machine learning.
[2] Johann Brehmer, Kyle Cranmer, Gilles Louppe, and Juan Pavez. A Guide to Constraining Effective Field

Theories with Machine Learning. 98(5):052004.
[3] Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer. MadMiner: Machine Learning-Based

Inference for Particle Physics. 4(1):3.
[4] Johann Brehmer, Gilles Louppe, Juan Pavez, and Kyle Cranmer. Mining gold from implicit models to

improve likelihood-free inference. 117(10):5242–5249.
[5] HEP ML Community. A Living Review of Machine Learning for Particle Physics.
[6] Kyle Cranmer and Lukas Heinrich. Yadage and Packtivity - analysis preservation using parametrized

workflows. 898:102019.
[7] Peter J. Diggle and Richard J. Gratton. Monte Carlo Methods of Inference for Implicit Statistical Models.

46(2):193–227.
[8] Irina Espejo, Sinclert Perez and Kyle Cranmer. Madminer workflow, 2020. Accessed: 2023-03-10.
[9] Irina Espejo, Sinclert Perez and Kyle Cranmer. Madminer workflow (machine learning). https://github.

com/madminer-tool/madminer-workflow-ml, 2020. Accessed: 2023-03-10.
[10] Irina Espejo, Sinclert Perez and Kyle Cranmer. Madminer workflow (physics). https://github.com/

madminer-tool/madminer-workflow-ph/, 2020. Accessed: 2023-03-10.
[11] Johann Brehmer, Felix Kling, Irina Espejo and Kyle Cranmer. Madminer tutorial. https://github.com/

madminer-tool/madminer-tutorial, 2020. Accessed: 2023-03-10.
[12] Donald B. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician.

12(4):1151–1172.
[13] Tibor Šimko, Lukas Heinrich, Harri Hirvonsalo, Dinos Kousidis, and Diego Rodŕıguez. REANA: A System

for Reusable Research Data Analyses. 214:06034.

https://github.com/madminer-tool/madminer-workflow-ml
https://github.com/madminer-tool/madminer-workflow-ml
https://github.com/madminer-tool/madminer-workflow-ph/
https://github.com/madminer-tool/madminer-workflow-ph/
https://github.com/madminer-tool/madminer-tutorial
https://github.com/madminer-tool/madminer-tutorial

