
Pruning and resizing deep neural networks for FPGA

implementation in trigger systems at collider

experiments

D. Mascione1,2,3, M. Cristoforetti2,3, A. Di Luca2,3, F. M. Follega1,3,
R. Iuppa1,3 and A. Saccardo1

1Università degli Studi di Trento, Via Sommarive 14, 38123 Trento, Italy
2Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
3TIFPA, Via Sommarive 14, 38123 Trento, Italy

E-mail: daniela.mascione@unitn.it

Abstract. Deep Learning algorithms are a powerful tool for performing a fast and accurate
selection of interesting data in collider experiments. In particular, they could be successfully
employed at the trigger level, taking advantage of high-performance hardware such as Field
Programmable Gate Arrays. However, this may require resizing Deep Neural Networks to fit
available resources. To this end, we have developed a new pruning technique. The proposed
method is simple and versatile and is well-suited to different types of neural networks. It is
effective in reducing the overall size of the network by eliminating unnecessary nodes, and
respects the final size constraints determined by the user.

1. Introduction
One of the major challenges in collider experiments is the generation of a significant amount
of data, which needs to be handled carefully. Frequently, limitations in data storage capacity
result in the recording of only a part of all available data [1]. To determine which events should
be saved for later analysis, a process known as trigger is employed. Trigger systems make use
of parallelized architecture to perform data selection and can be divided into various levels,
each utilizing distinct hardware. Each selection level takes as input the previous level’s output
and performs an additional selection to improve the accuracy of the result. The first level of
trigger systems primarily rely on specialized electronic circuits, including custom Application
Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLD), Field Programmable
Gate Arrays (FPGAs), and discrete logic components like Random-Access Memories (RAM).
However, with the significant advancements in FPGA technology in terms of speed and capacity,
many trigger systems are transitioning towards complete implementation in FPGAs [2].

Preventing the loss of crucial information in the trigger pipeline is a big concern, fueled by
the enormous quantity of data generated. Deep Learning algorithms, which have shown to be
incredibly helpful and efficient when dealing with big volumes of data [3], can be of use in this
regard. In an effort to take fast and accurate decisions, the High Energy Physics community has
undertaken a number of initiatives to investigate the potential use of Deep Learning algorithms
in the selection phases, particularly in the first level of the trigger chain. It is now relatively easy



to implement Deep Neural Networks (DNNs) onto the FPGAs that are utilized in the initial
stages of the trigger [4]. However, successful DNNs can require vast amounts of computation
and memory and are therefore not always compatible with the programmable resources available
on FPGAs, such as the number of logic units and memory slots. Some modifications are usually
required to adapt DNNs for implementation on FPGAs [5].

One approach to modify DNNs is to remove unimportant, redundant, or unnecessary
components through a process called network pruning. There are numerous ways to prune
DNNs, but it is challenging to find an ideal standard that guarantees optimal performance
while adhering to the size constraints set by FPGAs. To address this issue, we propose a new
pruning technique developed to remove unnecessary nodes from DNNs while respecting size
restrictions. Our technique automatically identifies the most effective nodes of each layer while
strictly preserving the final size limit, allowing for the selection of the best-performing network
architecture that fits within the available FPGA resources. This method proved to be easy and
versatile and can be integrated into various types of existing Deep Learning models.

2. Network Pruning
DNNs are computational models made up of many layers of interconnected fundamental
computing units called artificial neurons or nodes. Their task is to transform weighted inputs
into outputs. By changing the weights of the connections between neurons in the various layers,
the network learns to identify patterns in the input data in a process called training. DNNs
can be formed by a significant number of layers, nodes, and connections. To reduce the size
of a network it is necessary to remove some of those components. Network pruning is a class
of techniques used for this purpose that involves the removal of some structural parts, without
significantly affecting the network performance.

Several pruning strategies in use concentrate on eliminating single connections. This is a
quick and simple method for shrinking a model, but such a pruning technique will result in a
sparse network, which may be challenging to train [6]. On the other hand, acting on neurons
or layers can be less straightforward but results in a smaller, faster, and more resource-efficient
DNN without affecting the network’s architecture.

Another important aspect of pruning is deciding when to remove the network components.
Pruning can be done during the training phase or after the network has been trained. Most
pruning algorithms for neural networks perform the pruning after the training following a similar
process: first, the network is trained until it converges, and then, each structural element in the
network is given a score, and the network is pruned based on these scores [7]. This way of pruning
reduces the accuracy of the network, so it needs to be retrained to recover - a process called
fine-tuning. This process of pruning and fine-tuning is often repeated several times, gradually
reducing the size of the network. As a result, this pipeline can be time-consuming and may not
necessarily be the most convenient pruning strategy.

Based on this and the previous considerations, we looked into an alternative approach to
pruning DNNs. Instead of concentrating on individual connections, our technique focuses on
removing superfluous nodes. Pruning takes place during the training phase and a subsequent
fine-tuning campaign is not required. Moreover, the user can choose the ultimate dimension of
the pruned network. This approach involves adding a shadow network on top of the DNN that
needs to be resized. The shadow network consists of neurons that have only one connection to
each node of the previous layer of the original network and multiple connections to the nodes
of the subsequent layer. During training, the calculations performed by the shadow nodes are
such that their output will be zeroed when they are connected to unnecessary nodes, acting thus
as a filter. Consequently, only a portion of the neurons will be employed for learning, with no
information passing through the remaining nodes. The training process is optimized for learning
with exactly the number of nodes desired by the user, while the selection of which neurons to



use for learning is automatically determined by the shadow network.
This approach allows for both complete and partial DNN pruning, according to where the

shadow network is configured. Our method is also very versatile and showed promising results
both on Fully Connected DNNs (FC-DNNs), where every neuron in one layer is connected to
every neuron in the next layer, and Convolutional Neural Networks (CNNs), where neurons are a
set of filters that are applied to small regions of the input data. This new pruning method allows
for high-quality pruning that truly follows the specified overall compression rate. Our method
turned out to be very promising and can potentially be used for future DNNs implementations
on FPGAs.

3. Tests and results
Two different types of networks, FC-DNNs and CNNs, were used to test our pruning method.
Although they have been employed in different fields, both network types were utilized for
classification purposes.

3.1. Pruning FC-DNNs
For testing our pruning method with FC-DNNs, a network created to address a particular
High Energy Physics problem has been deployed. The DNN utilized in testing was developed
to discriminate between jets containing b-quarks produced by boosted Higgs boson decay in
proton-proton collision experiments and the irreducible background produced by QCD multi-jet
generation. The FC-DNN consisted of 4 hidden layers with 64 nodes per layer, for 40 input
variables. The goal was to distinguish between the Higgs boson decay and the background
without taking pile-up effects into consideration. In separate training campaigns, the same
initial DNN was pruned changing the number of desired nodes to be used for learning.

To evaluate the accuracy of the pruned models, the background rejection rate as a function
of the Higgs tagging efficiency has been examined. For each tagging efficiency value, a higher
rate of background rejection denotes better DNN performance. The plot in Figure 1 shows that
requiring more active nodes results in better performance, as expected; this suggests that just
the required fraction of nodes are employed for learning, while the remaining nodes have not
been used in the training.

The plot in Figure 2 displays another interesting result. Once the pruning is done, the
shadow network and the unused nodes from the main network can be removed. As a result,
a DNN with a more condensed architecture is produced, which can then be trained as a new
independent model. Test results have demonstrated that the DNN performance obtained is
comparable to that obtained by pruning the original network while training it. This validates
the hypothesis that integrating training and pruning into a single activity can be an interesting
alternative to the conventional training-pruning-retraining pipeline and verifies that the nodes
actually employed for the learning task are the ones selected by our method.

3.2. Pruning CNNs
A simple architecture has been used for preliminary tests to evaluate our pruning strategy
with CNNs. The network structure is that of LeNet-5 [8], with two convolutional layers, two
pooling layers, and three fully connected layers. The shadow network has been overlaid to
the convolutional block and the model has been trained using the popular image classification
dataset Fashion-MNIST [9]. As with the FC-DNN test, the same initial CNN was pruned in
different training campaigns with a different desired number of filters to be used for training.
Table 1 displays the results of the top-1 accuracy obtained on the validation set for different
fractions of filters required. The accuracy increases as the percentage of desired filters increases,
indicating that the constraint on the number of filters to be used has been satisfied and some
filters have actually been pruned.



Figure 1. Background rejection versus Higgs tagging efficiency for models pruned during
training with different percentages of nodes required.

Figure 2. Background rejection versus Higgs tagging efficiency for the original model, the model
pruned during training, and the pruned model trained as a new independent DNN obtained with
the 70% of nodes of the original model.

4. Conclusions
Collider experiments produce vast amounts of data that can not always be entirely stored, and it
is crucial to take advantage of the implementation of DNNs on FPGAs for performing a fast and
accurate data selection at the trigger level. However, DNNs need to be properly optimized before
being implemented on FPGAs. In order to downsize DNNs within the limitations imposed by
the constrained resources of FPGAs, we developed a novel pruning strategy. With our approach,



Table 1. Top-1 accuracy of a LeNet-5 architecture trained on the Fashion-MNIST dataset
and pruned during training with different percentages of filters required. All the accuracies are
tested on the validation set.

Percentage of filters required Top-1 accuracy

100% 88.71%
70% 87.98%
30% 73.18%

the total number of nodes in the neural network is reduced and the final network dimensions
can be determined by the user. Pruning is completed during the training itself, with no need for
separate training before or after the pruning. The proposed method has produced interesting
results both for FC-DNNs and simple CNNs architectures. Although further investigation with
more complex models is required, the preliminary results are encouraging and suggest that our
pruning approach can be successfully used for resizing DNNs employed in trigger systems of
collider experiments.

Acknowledgments
The work described in this paper has been carried out in a joint effort by the members of
the deepPP initiative of the University of Trento and Fondazione Bruno Kessler. Please visit
https://www.deeppp.eu/ for contacts and information about the group’s activities.

References
[1] Clissa L 2022 Survey of Big Data sizes in 2021 Preprint arXiv:2202.07659
[2] Smith W H 2020 Triggering and High-Level Data Selection Particle Physics Reference Library vol 2 ed C W

Fabjan and H Schopper (Cham: Springer) p 533
[3] Najafabadi M M, Villanustre F, Khoshgoftaar T M, Seliya N, Wald R and Muharemagic E 2015 J. Big Data

2 1.
[4] Duarte J et al 2018 JINST 13 P07027
[5] Cheng Y, Wang D, Zhou P and Zhang T 2018 IEEE Signal Processing Magazine 35 126
[6] Evci U, Pedregosa F, Gomez A and Elsen E 2020 The Difficulty of Training Sparse Neural Networks Preprint

arXiv:1906.10732
[7] Blalock D, Gonzalez Ortiz J J, Frankle J and Guttag J 2020 Proc. Mach. Learn. Syst. 2 129
[8] Lecun Y, Bottou L, Bengio Y and Haffner P 1998 Proc. IEEE vol 86 no 11 pp 2278-2324
[9] Xiao H, Rasul K and Vollgraf R 2017 Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine

Learning Algorithms Preprint arXiv:1708.07747


