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Abstract. The online Data Quality Monitoring system (DQM) of the CMS electromagnetic
calorimeter (ECAL) is a crucial operational tool that allows ECAL experts to quickly identify,
localize, and diagnose a broad range of detector issues that would otherwise hinder physics-
quality data taking. Although the existing ECAL DQM system has been continuously
updated to respond to new problems, it remains one step behind newer and unforeseen issues.
Using unsupervised deep learning, a real-time autoencoder-based anomaly detection system is
developed that is able to detect ECAL anomalies unseen in past data. After accounting for
spatial variations in the response of the ECAL and the temporal evolution of anomalies, the
new system is able to efficiently detect anomalies while maintaining an estimated false discovery
rate between 10−2 to 10−4, beating existing benchmarks by about two orders of magnitude.
The real-world performance of the system is validated using anomalies found in 2018 and 2022
LHC collision data. Additionally, first results from deploying the autoencoder-based system in
the CMS online DQM workflow for the ECAL barrel during Run 3 of the LHC are presented,
showing its promising performance in detecting obscure issues that could have been missed in
the existing DQM system.

1. Introduction
In a large-scale high energy physics experiment like CMS [1], ensuring timely detection of issues
that could affect the detector performance and the quality of data taken is a major task that
requires significant personpower and time. Presently, the CMS online DQM [2] consists of a
set of histograms that are filled based on a first-pass analysis of a subset of data collected by
the detector. These histograms are monitored continuously by a DQM shifter who reports
on any apparent irregularities observed. Depending on the severity of the problem, various
mitigation measures up to stopping of the data taking would be performed by the relevant
experts. While this system has proven to be dependable, the changing running conditions
and increasing collision rates, along with aging electronics, bring forth failure modes that are
newer and harder to predict. Machine learning (ML) based approaches to anomaly detection
in DQM have been adopted by previous efforts in CMS [3, 4]. In this paper, an unsupervised
method of anomaly detection for the online DQM of the CMS ECAL is presented utilizing an
autoencoder (AE) [5] on ECAL data processed as two-dimensional (2D) images. In a novel
approach, correction strategies are implemented to account for spatial differences in the ECAL
response as well as the time-dependent nature of anomalies in the detector. This system is
deployed in the online DQM for the ECAL barrel during LHC Run 3 collisions, complementing



the existing DQM plots. First results from the AE-based anomaly detection system are reported
indicating it to be a highly valuable diagnostic tool for ECAL experts involved in real-time data
taking operations. All the figures shown here are from the approved CMS public results in
Refs. [6, 7].

2. The CMS Electromagnetic Calorimeter and Data Quality Monitoring
The CMS ECAL [8] is a hermetic calorimeter which measures the energy, time, and position of
photons, electrons and electromagnetic fraction of jets. It played a crucial role in the discovery
of the Higgs Boson [9] as well as in the measurement of the Higgs properties. ECAL is made
up of scintillating lead tungstate crystals arranged in a cylindrical central barrel (EB) section
closed by two endcaps (EE+ and EE–).

The DQM system in ECAL mainly consists of two kinds of histograms: occupancy-style
histograms as shown in Fig. 1(a), filled with real-time data of vital quantities, and quality-style
histograms as shown in Fig. 1(b), which are drawn based on thresholds and rules applied on
the quantity in the occupancy-style histograms. Quality-style histograms are in color-coded
maps that are easy-to-interpret, so that it is possible to tell at a glance if something is wrong
in the ECAL. The color code used is as follows: green for good, red for bad, brown for a known
problem, and yellow for no data, which may or may not be an issue depending on the context.
The histograms are often plotted at the granularity of a trigger tower (TT), which is defined
as a set of 5x5 crystals. Each single square in Fig. 1 represents a TT, and 68 such TTs form a
supermodule (SM) in the barrel, corresponding to the numbered rectangles in Fig. 1. In online
DQM, these histograms are accumulated over a CMS data acquisition run, with each histogram
plotted at every lumisection (LS), that corresponds to a time interval of about 23 seconds, over
which the luminosity is considered to remain approximately constant.

(a) (b)

Figure 1: DQM plots for ECAL barrel: (a) occupancy-style and (b) quality-style histogram.

With increasing luminosity and harsher radiation environment, it becomes impossible to
anticipate all failure modes in a complex detector like ECAL. Though there are multiple alarms
set in the current DQM framework to catch various types of errors, they are prone to high
false positives and are limited by having to define hard-coded rules for every possible detector
geometry. To mitigate these issues, an automated approach to anomaly detection is explored
using unsupervised ML.

3. Autoencoder-based Anomaly Detection System
3.1. Network and Anomaly Detection Strategy
An unsupervised anomaly detection method is developed using an AE trained on occupancy-style
histograms from the ECAL DQM processed as 2D images. The AE built with a ResNet [10]
architecture using Pytorch [11] is trained with manually certified good data. The encoder
network of the AE encodes the input image into a lower dimensional latent space, and the
decoder network tries to reconstruct the original image from the encoded space. The goodness



Figure 2: AE architecture showing the encoder and decoder networks, with the ResBlock
structure displayed.

of reconstruction is measured by the reconstruction loss L, computed as the Squared Error
between the input (x) and the AE-reconstructed output (x′) as defined in Eq. 1:

L(x, x′) = |(x− x′)|2 (1)

The network trained on good data reconstructs the nominal detector image well with minimal
reconstruction loss. When fed with anomalous data, however, it fails to reconstruct the anomalies
and gives a higher loss. The squared error on each tower is calculated and plotted as a 2D loss
map, on which some post-processing steps are applied as explained in the next sections. A
threshold is then derived from the anomalous loss values that can efficiently catch 99% of the
anomalies.

The architecture of the AE used is shown in Figure 2. Each “ResBlock” consists of two
convolutional layers, with a ReLU activation [12] and a residual mapping. The input image
is passed through the encoder network that consists of a CNN, followed by an aggregating
maxpool layer. It is then sent through sequential layers of ResBlocks, up-sampling the feature
maps progressively. This is followed by a global maxpool that creates a compressed dense layer
of the encoded space. The encoded layer is then passed to the decoder network as the input,
which performs these operations in reverse and outputs a reconstructed image. Three separate
models are trained with this architecture: one for the barrel and one for each of the two endcaps,
owing to the differences in their shape, granularity, and response.

3.2. Dataset, Training and Validation
Each input image to the AE is the digitized hit occupancy map from a single LS. The dataset
used for training and validation is taken from the 2018 runs during LHC Run 2. It consists of
100 000 2D occupancy images, with training and validation dataset split in 9-to-1 ratio. In order
to make the quality interpretation consistent across different run conditions, occupancy maps are
normalized with respect to pileup (PU), which are additional proton-proton interactions within
the same proton bunch crossing. After pre-processing with the PU correction, AE models are
trained and validated separately for the barrel and each endcap.

In addition to the nominal validation, fake anomaly validation is performed, using the good
images from the nominal validation set but with synthetic anomalies introduced in random
towers. Three types of anomaly scenarios are studied:



(i) Missing SM: Entire SMs for the barrel are randomly set to have zero occupancy values in
each LS.

(ii) Single zero occupancy tower: A single tower is set to have zero occupancy at random in
each LS.

(iii) Single hot tower: A single tower is set to be hot, or having higher-than-nominal occupancy.

3.3. Spatial Response Correction
In the ECAL, the occupancy close to the beam pipe tends to be higher. This is clearly visible
in the average occupancy map shown in Fig. 3(a). This effect is reflected in the loss map shown
in Fig. 3(b) in the case of a missing SM, where the towers in the higher |η| region have higher
loss than those in the lower |η| region, for an anomaly affecting all the towers in the SM equally.
In order to interpret the towers as equally anomalous across the SM, the loss map is normalized
by the average occupancy map, as a spatial response correction, to obtain a uniform loss map
as illustrated in Fig. 3(c).

(a) (b) (c)

Figure 3: (a) Average occupancy map of EB. Loss maps for missing SM scenario (b) before and
(c) after spatial response correction.

3.4. Time correction
A correction to further reduce false positives is implemented by utilizing the time-dependent
nature of the anomalies in the detector. Unlike random fluctuations, real anomalies would
persist with time. Figure 4 describes the time correction strategy, where loss maps that have
been corrected for spatial effects from three consecutive LSs are multiplied with one another at
a tower level to boost the anomaly and suppress the fluctuations.

Figure 4: Time correction strategy: loss maps from three consecutive LSs (top panel) are
multiplied at a tower level to make a time-corrected loss map (bottom).



4. Results
An anomaly tagging threshold is chosen based on the validation set with fake anomalies, such
that 99% of the anomalies are detected. The performance of the AE is measured using the
metric False Discovery Rate (FDR) defined as:

FDR =
Number of good towers above the anomaly threshold

Number of good and bad towers above the anomaly threshold
(2)

The lower the FDR, lesser the false detection and better the performance of the AE.

4.1. Comparison with Baseline Cut-based Anomaly Detection
A baseline study is carried out comparing the performance of the AE with that of a traditional
cut-based approach, which is equivalent to the way most anomaly thresholds are defined in the
standard ECAL DQM. In this approach, baseline loss for a tower at a given (φ, η) position is
calculated for the barrel using the occupancy of the tower (tφη) and the average occupancy of
all towers within the same η-ring (〈tη〉) as:

Loss of towerφη = |tφη − 〈tη〉|. (3)

A threshold is derived on this baseline loss using the same criteria as that for the AE, of
achieving 99% anomaly detection from the fake anomaly validation. A similar baseline loss is
not calculated for the endcaps, as even within the same η-ring the gradient of occupancy across
the towers is much larger for the endcaps making it not a good metric for anomaly detection.

4.2. Testing on Fake Anomalies
Table 1 summarizes the FDR values from each anomaly scenario. It can be seen that the AE
outperforms the baseline algorithm, for the barrel, for all anomaly scenarios. For the barrel and
the endcaps, single zero occupancy towers are most challenging to detect. Spatial correction
improves the AE performance for the towers with zero occupancy anomalies. Without the
correction, the loss values for the zero occupancy towers are proportional to their nominal
occupancy, which is biased to be larger in the higher |η| region. This gradient in loss is flattened
out by the spatial correction, and the effect of which is more pronounced for the endcaps due to
their larger effective gradient in the occupancy.
For hot towers, spatial correction in turn increases the FDR since the hot tower loss is biased to
be higher in the opposite direction, towards the lower |η| region. So while the spatial correction
reduces the gradient in loss for zero occupancy towers and improves their detection, for the hot
towers the gradient is enhanced and the AE performance slightly worsens. However, this effect
is mitigated by the time correction that gives an order of magnitude improvement in all anomaly
scenarios.

Final performance scores after applying all post-processing are around 5% for the zero
occupancy tower scenario and sub-percent for the missing SM (for the barrel) and hot tower
scenarios. Remaining false positives have likely come from real anomalous towers that have
fallen into the manually certified good dataset. Based on the performance for each scenario, a
single anomaly tagging threshold is chosen for each sub-detector part, such that it can efficiently
tag all anomalies.

4.3. Testing on Real Anomalies
The AE model is further tested using real anomalous data from 2018 and 2022 LHC runs as
illustrated in Fig. 5. Figures 5(a) and (b) respectively show occupancy plots from Run 2 with
a missing SM EB−03, and with a ring of hot towers with a zero occupancy tower in the center
in EB−01 and EB−18. Their corresponding final quality plots from the AE loss map identify



Table 1: Summary of FDR at 99% anomaly detection in fake anomaly validation.

Scenario Missing SM Zero Occupancy tower Hot tower
EB EB EE+ EE- EB EE+ EE-

Baseline
no correction

14% 90% N/A N/A 5.2% N/A N/A

Baseline
after time correction

5.9% 80% N/A N/A <0.01% N/A N/A

AE
no correction

3.6% 51% 86% 87% 2.8% <0.01% <0.01%

AE after
spatial correction

3.1% 49% 13% 14% 2.9% 0.06% 0.05%

AE after
spatial and time correction

0.13% 4.1% 5.6% 6.3% <0.01% <0.01% <0.01%

the bad towers in red in Figures 5(d) and 5(e) respectively. For the endcaps, a real anomaly case
from Run 3 is illustrated in Fig. 5(c), with two zero occupancy towers and a hot tower around
the edge. The AE quality plot in Fig. 5(f) spots the two zero occupancy towers correctly. The
hot tower does not show up in the quality plot, as it is previously identified as problematic and
therefore masked in the DQM system.

The performance of the AE on real-life anomalies demonstrates its ability to detect various
kinds of anomalies using a single threshold, without the need for hard-coded rules based on the
type of anomaly or the geometry, and emphasizes the power of unsupervised ML as an efficient,
adaptable anomaly detection tool.

(a) Input occupancy map of EB
with an error in SM EB−03

(b) Input occupancy map of EB
with a group of hot towers

(c) Input occu-
pancy map of
EE with two zero
occupancy towers

(d) Final AE quality plot with the
bad SM in red

(e) Final AE quality plot with the
bad towers in red

(f) Final AE qual-
ity plot with the
two bad towers in
red

Figure 5: Input occupancy images with real anomalies (top) and corresponding AE quality plots
(bottom) for the barrel and endcaps.

5. Deployment in Online DQM for LHC Run3
The AE-based anomaly detection system, named MLDQM, has been deployed in the ECAL
online DQM workflow for the ECAL barrel since the start of Run 3 of the LHC. This introduces
a new ML quality plot from the AE in the ECAL DQM workspace (see Fig. 6(a)) complementing



the existing plots. The model inference is done by exporting the trained Pytorch model to
Onnx [13] and run in CMS production using Onnx Runtime [14]. The deployment of the
models for the endcaps is underway and will be ready for the 2023 runs.

It has been observed that the MLDQM is able to correctly identify consistently bad towers,
as well as transient bad towers, which may point to deteriorating channels in the ECAL that
are not easily detected by the existing DQM plots. Figure 6(a) shows the ML quality plot with
two towers in EB+08 marked red: Tower 1 closest to iη = 0 and Tower 2 closest to iη = 85.
Figure 6(b) shows the total digitized hit occupancy map accumulated over all LSs of the run
in the online DQM. Note that the towers with zero occupancy in the figure are known to have
had issues and are masked, not showing up in the ML quality plot. The two aforementioned
towers that are spotted from the ML quality plot exhibit some noticeable patterns in Fig. 6(b).
Here, Tower 1 is visible with very low occupancy compared to other towers, indicating that it is
a persistent zero occupancy tower, while Tower 2 is faintly visible, indicating that it likely had
zero occupancy in several LSs but not in all, thus pointing to a transient anomaly. This feature
also shows up in the occupancy map in Fig. 6(c), produced offline by averaging over several runs
in Run 3. The low occupancy of Tower 2 in this plot implies that the tower indeed had zero
occupancy transiently for many LSs in these runs, and that it is likely not a stand-alone random
occurrence. This tower could be pointing to channels on the way to becoming permanently
faulty. This feature of the MLDQM which detects potentially deteriorating channels would be
immensely helpful to detector experts monitoring the health of the detector. By keeping track
of how often a particular tower is flagged as bad by the AE and defining a threshold on this
frequency, experts can choose to mask the transient tower proactively.

(a) (b) (c)

Figure 6: (a) ML quality plot accumulated over 9 LSs, from the MLDQM deployed in the online
DQM workflow for EB from a 2022 run, showing two bad towers in red. (b) The digitized hit
occupancy plot accumulated over all the LSs in the full run from the online DQM for the same
run. (c) PU-corrected average occupancy plot over several runs in 2022.

6. Summary
A robust, deployment-ready AE-based anomaly detection and localization system has been
developed for the CMS ECAL using unsupervised ML. An efficient pileup-based normalization
strategy is applied on images made from the raw detector data, making quality interpretations
consistent across changing experimental conditions. The application of novel techniques of
spatial and time corrections gives an order of magnitude improvement in performance. The
autoencoder-based system demonstrates efficient detection of anomalies of various degrees,
shapes, and positions in the detector up to a tower-level granularity, using a single efficient
threshold for each sub-detector part. The MLDQM system deployed in the online DQM workflow
for the ECAL barrel performs well on real-time data from Run 3 by detecting anomalies as well as
identifying potential degrading channels that goes undetected by the existing DQM plots. This
ML-based DQM system is designed to complement and improve the existing DQM by helping
detector experts make more accurate decisions and reduce false alarms. This autoencoder-based



anomaly detection system can be generalized and adapted to other particle physics experiments
for data quality monitoring.
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