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Abstract. The IRIS-HEP Analysis Grand Challenge (AGC) is designed to be a realistic
environment for investigating how analysis methods scale to the demands of the HL-LHC. The
analysis task is based on publicly available Open Data and allows for comparing the usability
and performance of different approaches and implementations. It includes all relevant workflow
aspects from data delivery to statistical inference. The reference implementation for the AGC
analysis task is heavily based on tools from the HEP Python ecosystem. It makes use of
novel pieces of cyberinfrastructure and modern analysis facilities in order to address the data
processing challenges of the HL-LHC. This contribution compares multiple different analysis
implementations and studies their performance. Differences between the implementations
include the use of multiple data delivery mechanisms and caching setups for the analysis facilities
under investigation.

1. Introduction
The Analysis Grand Challenge (AGC) started out as an integration exercise for IRIS-HEP [1],
connecting various areas of work within the institute and the surrounding ecosystem. It quickly
transformed from that into a project that we positioned to be useful to the broader community.
The AGC provides a testbed for physics analysis software developers to explore user experience,
interfaces, and performance [2].

The goal of the analysis exercise is to demonstrate the handling of data pipeline requirements
of the HL-LHC, including large data volumes, bookkeeping, and handling of different types of
systematic uncertainties. It also includes investigations of the use of reduced data formats (e.g.
PHYSLITE [3] or NanoAOD [4]), aligned with the goals of the LHC experiments. In addition
to that, the project aims to engage users to explore columnar analysis concepts.

The AGC also aims to explore the concept of fast “interactive analysis” with a turnaround
time of minutes or less. We are testing the feasibility of this idea by employing highly parallel
execution in short bursts, which furthermore needs to happen with low latency. This also requires
heavy use of caching to improve performance in subsequent executions of similar analysis tasks.

The HL-LHC will introduce new computing challenges surrounding the adaption of existing
analysis paradigms at facilities to handle more data-intense end-user data analysis. To address
this, there are ongoing efforts from different groups to study and prototype new facilities capable
to assist in the upcoming physics analysis challenges.

Another important target we envision for the AGC is to prepare analysis facilities for
execution of analyses towards the HL-LHC and to provide new concepts and services for end



users.

2. IRIS-HEP Analysis Grand Challenge components
The AGC project includes efforts on a number of related items. While IRIS-HEP is involved in
all of them, the project is structured in a way to allow for contributions on specific aspects of
the project without having to interact with everything at once. Aspects of the work include:

(i) defining a physics analysis task of realistic HL-LHC scope and scale, allowing to easily
implement and re-implement it;

(ii) developing analysis pipelines that implement said physics analysis task;

(iii) finding and addressing performance bottlenecks and usability concerns for the pipelines
implemented.

These proceedings describe first performance measurements obtained, following the definition
of an analysis task and its implementation with a specific pipeline as described in reference [2].
We will briefly summarize the task and implementation here.

2.1. AGC analysis task description
The physics analysis task consists of a cross-section measurement of top quark pair production in
final states with a single charged lepton. This task is chosen to capture relevant workflow aspects
of a typical physics analysis. The analysis phase space is also somewhat generic, allowing to
convert the setup into other types of analyses, such as searches for beyond the Standard Model
physics phenomena. The analysis task features prominently the handling of different types
of systematic uncertainties, including the handling of associated metadata and bookkeeping
aspects. The analysis logic itself includes simple kinematic top quark candidate reconstruction.

The input data to this task is derived from Run-2 CMS Open Data [5], with around 400 TB
available in MiniAOD [6] format. The implementation described here makes use of inputs in
an ntuple format, pre-converted from the MiniAOD format and consisting of about 1 Billion
events (around 3.5 TB) made available publicly in XRootD-accessible storage at the University
of Nebraska–Lincoln.

The custom ntuple format used here is similar to the NanoAOD format used by CMS and
the PHYSLITE format used by ATLAS. The analysis task probes a workflow that is applicable
to both ATLAS and CMS.

Open Data plays a crucial role in this project, as it allows anyone to participate without
requiring specific access permissions. The analysis task focuses on demonstrating realistic
workflows, but is not concerned about getting all physics details fully correct: it includes the use
of simplified tools for calibrations and systematic uncertainties to probe the workflow aspects.

2.2. An AGC implementation: software stack and analysis pipeline
The implementation of the AGC analysis task employed for the results shown in these
proceedings makes use of a set of tools developed by IRIS-HEP and partners, with figure 1
depicting the software stack being used and tested.

The pipeline setup includes the ServiceX [7] service providing the delivery of columns
following a declarative FuncADL [8] request. The coffea [9] framework then orchestrates
distributed event processing and histogram production using uproot [10] and awkward-array [11],
with hist [12, 13] providing histogramming functionality. Visualization is provided by the
mplhep [14] package. The statistical model construction is done by cabinetry [15], while
statistical inference is performed using the pyhf [16, 17] package.

Implementations for AGC analyses task are openly developed in the IRIS-HEP AGC
repository [18], including the specific implementation used for the performance results in these



Figure 1: Software packages employed and considered in the AGC implementation described
here, including the ones focused on end-user physics analysis (left box), data delivery service
(ServiceX, middle box) and additional services provided by analysis facilities (right box).

proceedings. The repository also includes the categorization of datasets in terms of their role in
the AGC analysis task and where to find them.

2.3. An AGC implementation: R&D on data management tools
An ongoing research and development effort focuses on improved techniques for delivering physics
events to analysts. This includes the effort on the development of dedicated data delivery services
(such as ServiceX ) and integrating them together as one coherent ecosystem. All of this is
intended to be available on analysis facilities, offering a user-friendly access and experience.

2.4. An AGC implementation: R&D on analysis facilities
As one of the prototype facilities targeting the HL-LHC, the Coffea-casa facility [19], developed
by the University of Nebraska–Lincoln (IRIS-HEP), brings new, interactive paradigms for users
from R&D into production. This facility is used as a testbed for the IRIS-HEP Analysis Grand
Challenge, offering the possibility for end-users to execute analysis at HL-LHC-scale data rates.
This facility is adopting an approach that allows it to transform existing facilities (e.g. LHC
Tier-2 sites) into composable systems, using Kubernetes as the enabling technology as described
in figure 2.

The Coffea-casa facility provides modularity and portability offering various configurations.
The Coffea-casa team demonstrated the ability to port and customize the analysis facility setup
to another site, co-locating it with the existing ATLAS Tier-3 analysis facility at the University
of Chicago. The configuration required adjusting the Coffea-casa facility setup to become more
Kubernetes-native, providing an HTCondor batch queue directly in Kubernetes.

3. Results
The performance measurements employ two AGC analysis setups to test different scalability
issues: many-core scalability and distributed scaling. Two different facilities were used as
testbeds, one at the University of Nebraska–Lincoln, a second at the University of Chicago.

The University of Nebraska–Lincoln hosts a US-CMS Tier-2 site as well as resources dedicated
to IRIS-HEP for development of the Coffea-Casa CMS analysis facility. This facility was used
for an AGC scale-out performance benchmarking setup, with available resources including 12x
Dell R750 each with dual Xeon Gold 6348 28C/56T CPUs, 512GB RAM, 200Gb networking,
and 10x 3.2TB NVMe, providing in total 672 cores.

The facility at the University of Chicago was used to test the scaling performance when
using locally available input files. The university hosts a US-ATLAS Tier-3 site and additional
resources dedicated to IRIS-HEP for the development of a Coffea-Casa ATLAS analysis facility.



Figure 2: Coffea-casa facility, developed by the University of Nebraska-Lincoln (IRIS-HEP).

Resources available for testing included 16 nodes with dual Xeon Gold 6348 56C/112T CPUs,
384 GB RAM, and 10x 3.2 TB NVMe, providing in total 1792 cores.

3.1. AGC setup with dataset stored on local disks
The goal of these performance tests was to check the multi-core scalability for an AGC setup
using coffea as analysis framework and processing the AGC dataset stored on local disks to
avoid network overhead. For efficient scaling over multiple local cores we used Python futures
via the FuturesExecutor in coffea.

(a) Walltime measurements as a function of the
number of cores used.

(b) Event rate as a function of the number of cores
used.

Figure 3: Reading locally stored files and scaling on local machine at the University of Chicago
Coffea-casa AF.

Figure 3 shows the performance in terms of total walltime and event rate per core when
scaling the analysis to use more cores. The slight degradation in efficiency may point towards
some remaining overhead in the parallelization.

3.2. AGC: scale-out to distributed resources
Tests of the scale-out AGC implementation performance in a distributed setup were performed at
the Coffea-casa facility at the University of Nebraska–Lincoln. We used a coffea setup employing



the DaskExecutor to allow running tasks in a Dask [20] Distributed cluster. The resulting jobs
ran on the HTCondor Tier-2 batch queue.

(a) Event rate scaling as a function of the number
of events processed.

(b) Dask task graph showing efficient scheduling.

Figure 4: Using the Coffea-casa facility at the University of Nebraska–Lincoln CMS Tier-2
(coffea with DaskExecutor): stable scaling up to 1B events on the Tier-2 HTCondor job queue
with efficient scheduling.

Figure 4 shows the event rates measured in scaling tests as a function of the number of events
processed. This setup employs files read over the network. The event rate is stable, independent
of the size of the dataset being processed. The Dask task graph shows efficient scheduling of
jobs performing the data processing.

3.3. Scaling with I/O and number of cores
Further scaling tests performed at the University of Nebraska–Lincoln Coffea-casa setup focused
on the effect of using an increased number of cores and reading various fractions of the data in
the input datasets.

(a) Event rate scaling as a function of number of
cores

(b) Event rate scaling as a function of the fraction
of data being read.

Figure 5: Using the Coffea-casa facility at the University of Nebraska–Lincoln CMS Tier-2
(coffea with DaskExecutor): stable scaling to 400 cores, event rates as a function of the fraction
of data read.

Stable scaling is observed up to 400 cores as depicted in figure 5. The fraction of data in the
input files being read (which changes depending on the number of columns accessed in the file)



can have a significant effect on the event rates, indicating that the time spent on data processing
is not a significant contribution to the event rate when only reading a small fraction of the data
in the files.

4. Future directions for further performance improvements
We expect that the following projects can improve the performance of AGC implementations
beyond the results shown in section 3:

(i) XCache [21] — XRootD file-based caching proxy used for regional and site caches to store
and serve datasets, helping to reduce latency and WAN traffic;

(ii) ServiceX — data extraction and data delivery service, offering “column-on-demand”
functionality;

(iii) Skyhook DM [22] — an extension of the Ceph distributed storage for scalable storage
of tables and for offloading common data management operations (selection, projection,
aggregation, and indexing, as well as user-defined functions).

5. Conclusion and outlook
The first performance measurements obtained in the context of testing a specific pipeline
implementing the AGC analysis task at various facilities show promising results. We plan to
extend the analysis pipeline to include additional methods for data delivery and compare their
performance in future work. We also expect to extend measurements to additional hardware
configurations on various CMS and ATLAS analysis facilities.

Acknowledgments
This work was supported by the U.S. National Science Foundation (NSF) Cooperative
Agreement OAC-1836650 (IRIS-HEP).

References
[1] Elmer P, Neubauer M and Sokoloff M D 2017 Strategic Plan for a Scientific Software Innovation Institute

(S2I2) for High Energy Physics (Preprint 1712.06592)
[2] Held A and Shadura O 2022 PoS ICHEP2022 235
[3] Elmsheuser J et al. 2020 EPJ Web Conf. 245 06014
[4] Rizzi A, Petrucciani G and Peruzzi M (CMS) 2019 EPJ Web Conf. 214 06021
[5] CMS Data preservation and open access group 2022 Getting Started with CMS 2015 Open Data

https://opendata.cern.ch/docs/cms-getting-started-2015
[6] Petrucciani G, Rizzi A, Vuosalo C and on behalf of the CMS Collaboration 2015 Journal of Physics:

Conference Series 664 072052 URL https://dx.doi.org/10.1088/1742-6596/664/7/072052

[7] Galewsky B, Gardner R, Gray L, Neubauer M, Pivarski J, Proffitt M, Vukotic I, Watts G and Weinberg M
2020 EPJ Web Conf. 245 04043

[8] Proffitt M and Watts G 2021 EPJ Web Conf. 251 03068
[9] Gray L et al. coffea URL https://doi.org/10.5281/zenodo.3266454

[10] Pivarski J, Schreiner H, Hollands A, Das P, Kothari K, Roy A, Ling J, Smith N, Burr C and Stark G Uproot
URL https://doi.org/10.5281/zenodo.4340632

[11] Pivarski J, Osborne I, Ifrim I, Schreiner H, Hollands A, Biswas A, Das P, Roy Choudhury S, Smith N and
Goyal M Awkward Array URL https://doi.org/10.5281/zenodo.4341376

[12] Schreiner H et al. boost-histogram URL https://doi.org/10.5281/zenodo.3492034

[13] Schreiner H, Liu S and Goel A hist URL https://doi.org/10.5281/zenodo.4057112

[14] Novak A et al. 2022 mplhep URL https://doi.org/10.5281/zenodo.3766157

[15] Held A, Feickert M, Schreiner H, Henkelmann L, Hollands A and Simpson N cabinetry URL https:

//doi.org/10.5281/zenodo.4742752

[16] Heinrich L, Feickert M and Stark G pyhf URL https://doi.org/10.5281/zenodo.1169739

[17] Heinrich L, Feickert M, Stark G and Cranmer K 2021 Journal of Open Source Software 6 2823 URL
https://doi.org/10.21105/joss.02823

[18] Held A et al. Analysis Grand Challenge URL https://doi.org/10.5281/zenodo.7274936

1712.06592
https://opendata.cern.ch/docs/cms-getting-started-2015
https://dx.doi.org/10.1088/1742-6596/664/7/072052
https://doi.org/10.5281/zenodo.3266454
https://doi.org/10.5281/zenodo.4340632
https://doi.org/10.5281/zenodo.4341376
https://doi.org/10.5281/zenodo.3492034
https://doi.org/10.5281/zenodo.4057112
https://doi.org/10.5281/zenodo.3766157
https://doi.org/10.5281/zenodo.4742752
https://doi.org/10.5281/zenodo.4742752
https://doi.org/10.5281/zenodo.1169739
https://doi.org/10.21105/joss.02823
https://doi.org/10.5281/zenodo.7274936


[19] Adamec M, Attebury G, Bloom K, Bockelman B, Lundstedt C, Shadura O and Thiltges J 2021 EPJ Web
Conf. 251 02061

[20] Dask Development Team 2016 Dask: Library for dynamic task scheduling https://dask.org
[21] Bauerdick L A T et al. (CMS) 2014 J. Phys. Conf. Ser. 513 042044
[22] Chakraborty J, Jimenez I, Rodriguez S A, Uta A, LeFevre J and Maltzahn C 2022 2022 22nd IEEE

International Symposium on Cluster, Cloud and Internet Computing (CCGrid) pp 81–88

https://dask.org

