
Monitoring CMS experiment data and infrastructure

for LHC Run3 and beyond

Ceyhun Uzunoglu1, Felipe Gomez2, Brij Kishor Jashal3, Valentin Y
Kuznetsov4, Federica Legger5, Benedikt Maier1, Oscar Fernando
Garzon Miguez6, Garyfallia Paspalaki7, on behalf of the CMS
Collaboration
1 CERN, Geneva, Switzerland
2 Universidad de los Andes, Colombia
3 Tata Inst. of Fundamental Research, Mumbai, India
4 Cornell University, New York, U.S.A.
5 Istituto Nazionale di Fisica Nucleare, via Pietro Giuria 1, 10125 Torino, Italy
6 Fermi National Accelerator Lab., IL, U.S.A.
7 Purdue University, IN, U.S.A.

Abstract. The CMS experiment at CERN is a scientific endeavor that requires the
coordinated efforts of thousands of researchers and engineers from around the world. To process
and store the petabytes of data produced by CMS, the experiment relies on a distributed
computing infrastructure. The CMS Offline and Computing group is responsible for workflow
and data management, to ensure that critical datasets are processed and made available for
the physics community in a timely manner. Scalable and reliable monitoring services are
essential to ensure the efficient usage and performance of the computing infrastructure. This
note presents the CMS Monitoring infrastructure, services, and applications, along with the
improvements made in data management monitoring over the past few years. By adopting
open-source technologies such as Kubernetes and Prometheus, and by relying on the CERN
IT and MONIT services, the CMS Monitoring group has established a reliable and scalable
monitoring infrastructure and services which are essential for computing operations of the CMS
collaboration.

1. Introduction
Computational tasks for the CMS experiment [1] at the Large Hadron Collider (LHC) at
CERN are performed in a distributed infrastructure consisting of more than one hundred
Worldwide LHC Computing Grid (WLCG) sites [2]. Physics data are stored, processed, and
transferred in these computing centers worldwide. Computing operations in CMS focus on the
efficient exploitation of the pledged resources dedicated to CMS in the worldwide computing
grid. Services involve workload and workflow management [3, 4, 5], data storage and transfer
management [6, 7, 8]. To help manage and analyze the vast amounts of data produced by the
CMS computing services, the CMS Monitoring and Analytics group was established [9].

Over the past few years, monitoring of CMS computing services has evolved and consolidated
around the CERN-IT and Monit infrastructures [10] and open-source technologies. Along with
typical device metrics such as availability, audit, system, and event logs, many different services
produce application logs and other important metadata which need to be regularly monitored.

Rather than using custom monitoring tools, many different services have adopted the CMS
Monitoring infrastructure for their needs. CERN-IT provides services to store, process and
access these muti-temporal monitoring data-sets. This infrastructure includes services like
Hadoop [11], Spark [11], OpenSearch (formerly ElasticSearch [12]), Grafana [13], OpenStack,
messaging queues [11], and more. In recent years, CMS Monitoring has built its infrastructure
around these services and has greatly benefited from them. In addition to the services provided
by CERN-IT, CMS Monitoring has also added its own monitoring infrastructure to cover also
the collaboration’s more advanced monitoring needs. Most of these monitoring services are
deployed in Kubernetes [14] (see Fig. 1).

Figure 1. Overview of the CMS Monitoring Infrastructure. We show the data producers, the
computing resources on which the monitoring services run, and the visualization frameworks
used to access and display the monitoring metrics.

The monitoring needs of the CMS computing infrastructure vary widely based on data type,
structure, and size. Therefore, each monitoring data is processed, transferred through, and
stored in different mediums. These mediums can be categorized as follows:

1.1. Time-series metrics and pull-based monitoring
Many service metrics are essential to monitor service availability and usage statistics.
These metrics are mostly in time-series format and are stored in the CMS monitoring
Prometheus [15]/VictoriaMetrics [16] services. Typically these metrics stem from different
services in different domains and infrastructures, which force pull-based access only. Therefore,
they are accessed with tailor-made tools and exposed to Prometheus. For this purpose, CMS
Monitoring has leveraged special exporters mostly written in GoLang and Python, running as
a service in Kubernetes.

1.2. Logs with different formats and push-based monitoring
Application logs may come in very different formats or not formatted at all. Therefore, they
need to be parsed in the correct format and stored depending on their retention policy, in
HDFS, OpenSearch, InfluxDB [17] services (respectively long, medium or short term). For this

push-based monitoring, CMS Monitoring hosts LogStash [12] services to parse unstructured
data and transfer it to proper monitoring storage. Additionally, our users are not forced to
use Logstash to parse and format their logs. Custom producers can send data directly to
ElasticSearch/OpenSearch, HDFS, or InfluxDB through message brokers provided by CERN-
IT. To make this kind of data publishing more robust and standardized, we provide Python
library support for message broker communication.

1.3. Aggregation and analysis support
In recent years, the monitoring needs that require processing big data in CMS have increased,
and we have standardized our big data aggregations using Spark and data transfer tools in
Kubernetes environments. This is explained further in Section 2.

1.4. Kubernetes monitoring
There are many Kubernetes clusters used for the computing operations in the CMS collaboration.
Our Prometheus/VictoriaMetrics services are made available as a back-end metric storage for
these clusters. They have also helped in centralizing the monitoring access of all Kubernetes
cluster metrics.

1.5. Data access and front-end services
Front-end tools are an essential part of monitoring, and CMS Monitoring uses CERN-IT
Grafana, which is the main entry-point for the monitoring stack, and OpenSearch Kibana [12]
as central front-ends for all back-end monitoring services. We also use custom monitoring tools
developed for special purposes such as JQuery DataTable pages and Plotly dashboards.

Overall, CMS Monitoring handles unstructured, structured, time-series and static data, and
stores or transfers them to NoSQL (CERN-IT: OpenSearch, InfluxDB; in-house: Prometheus,
VictoriaMetrics) and long-term storage (HDFS) using open-source technologies.

2. Kubernetes infrastructure
CMS Monitoring has transitioned to Kubernetes as a service infrastructure and increased its
number of Kubernetes services over the years. Kubernetes is not only useful for application
servers but also for all kinds of monitoring suites. Because of its core features such as scalability,
fast deployment processes, low operation costs, and flexibility, it allows for the implementation
of new monitoring services and their maintenance in a scalable and sustainable way.

Currently, CMS Monitoring manages and operates services deployed in eight Kubernetes
clusters. Three of them (called MAIN, HA-1, HA-2) work together to provide critical services in
high availability mode, while the other five (CRONS, NATS, VM-AGG, DM-MONIT, TEST)
host special services for different purposes. See Fig. 2 for an architectural diagram.

2.1. Highly Available Prometheus, VictoriaMetrics (VM) and their service suites
Prometheus is a Cloud Native Computing Foundation (CNCF) supported open-source time-
series metric storage with a rich ecosystem of features and tools for various operations. In our
infrastructure, Prometheus is deployed in high availability mode with Prometheus instances
deployed in three different Kubernetes clusters in different CERN compute availability zones.
Along with Prometheus instances, VictoriaMetrics services are also deployed in each cluster that
hosts Prometheus. VictoriaMetrics serves as both a long-term metric storage and remote-write
storage to our own Prometheus instances, as well as for more than ten external Prometheus
instances hosted by other CMS groups. All metrics in Prometheus and VictoriaMetrics can be

exporters

P
R
O
M
X
Y

VM-AGG

NATS

DM-MONIT

TEST

go-web

mongo

spark

AUTH

P
R
O
M
X
Y

NATS clients

pushgateway

CRONS

pushgateway

Sqoop

log-clustering

vmalert

vmalert-1h

HA-1

exporters

🌐[cms-monitoring-ha1]
pushgateway

HA-2

exporters

🌐[cms-monitoring-ha2]
pushgateway

🌐[cms-monitoring]
🌐[cms-nats]

🌐[cms-monitoring-agg]

🌐none

🌐[cms-dm-monitoring]

🌐[cms-monitoring-cron]

MAIN

karma

karma

karma

Spark crons

Figure 2. The CMS Monitoring Kubernetes infrastructure. The Kubernetes clusters MAIN,
HA-1, HA-2, CRONS, NATS, VM-AGG, DM-MONIT, and TEST are shown. A detailed
description of the services running in each cluster can be found in the text.

accessed through a single Grafana data source using the Promxy service, which is connected to
all Prometheus and VictoriaMetrics instances in these three clusters.

CMS Monitoring’s Prometheus service scrapes metrics from over 150 targets, which include
external node exporters of machines, along with custom exporters mentioned in the pull-based
monitoring section. Some of these targets are special-purpose exporters that collect data from
different sources, convert them to Prometheus time-series metric format, and expose them. All
these exporters are also deployed in each high availability cluster. For batch job metrics, CMS
Monitoring provides the PushGateway service as another monitoring solution.

Similar to the aforementioned services, AlertManager (AM) [15] instances are also distributed
in these three high availability Kubernetes clusters. The computing operation teams may create
their own alert rules for their metrics in the Prometheus service, and AlertManager manages
the transmission of notifications via various communication channels (email, Slack, custom
webhook).

The Prometheus-VictoriaMetrics-AlertManager-Exporters service stack in three clusters has
proven its abilities over the years, with zero downtime even during mandatory migrations and
IT service incidents.

2.2. Other Kubernetes clusters and services
Other Kubernetes clusters in CMS Monitoring were created for specific use cases and host many
important services. Following the Kubernetes architectural design principles, each service stack
is deployed in a dedicated cluster. These are listed below:

• The CRONS cluster hosts services for Spark jobs, Sqoop [11] jobs, and other batch
processing services in the Kubernetes environment. Each Spark job, running hourly, daily
or monthly, is a critical data producer for specific monitoring workflows. Due to the heavy
requirements of CPU and memory usage for the execution of these jobs, it is necessary to
orchestrate their execution to optimise the usage of the cluster.

• The CMS Monitoring VM-aggregated (VM-AGG) cluster hosts two VictoriaMetrics
instances and their services to serve as long-term storage for Rucio service metrics. These
metrics reach the VictoriaMetrics backend after some aggregations are performed in the
vmagent services of the MAIN cluster.

• NATS [19] is a messaging-oriented middleware service deployed in our NATS cluster,
providing another alternative solution for message broker needs.

• The Data Management (DM-MONIT) monitoring cluster is dedicated to a set of recently
created services, described in the next section.

3. Data Management Monitoring Improvements
To help with the transition [20] from PhEDEx to Rucio for data transfers and management, CMS
Monitoring has developed a critical service to monitor dataset usage and storage statistics in the
Rucio Storage Elements (RSE) on the WLCG sites. Rucio has its own set of monitoring services
to keep detailed metrics about the current placement of dataset replicas in RSEs. However,
Rucio internal monitoring tools were not integrated with the CMS Data Bookkeeping Service
(DBS) [21], which stores metadata of all datasets. Rucio tables provide metrics such as size,
last access, last creation, event count, replica file count, accessed file count, locks, lock rules,
and account information of file replicas, blocks, and datasets and containers in the RSEs. On
the other hand, DBS tables provide metadata of the file, block, and dataset, including data-
tier, campaign, acquisition era, and size. While Rucio provides the actual location of dataset
replicas and the reason (lock rules) in the computing grid storage, DBS is the main source of
their definition.

To enable this integration, CMS Monitoring has developed two data producers that aggregate
Rucio and DBS database tables using Spark jobs and send the data to MONIT OpenSearch for
time-series historical monitoring, along with a stand-alone MongoDB instance that serves as a
storage to a web service backed by Go and JQuery DataTables stack (see Fig. 3).

Figure 3. The data pipeline for data management monitoring based on Sqoop dumps of the
Rucio and DBS database tables. The monitoring metrics are aggregated with Spark jobs and
stored in MongoDB. Metrics are visualised using a web service written in GoLang and based on
DataTables [22]

3.1. Data pipeline
The data pipeline for data management monitoring consists of Sqoop jobs, Spark jobs, and
an import tool. Sqoop jobs move data from the DBS and Rucio databases to HDFS storage.
Spark jobs are designed to join two different information systems with custom, domain-specific
knowledge. They involve more than twenty join operations between Spark datasets and tens of
aggregations to reach the final data schema, which can be defined as all the required specifications
of a dataset including all its metadata and locations. The data pipeline ends with transporting
the final aggregated results to OpenSearch through an AMQ broker and to MongoDB with its
import tools.

3.2. Data access
Historical aggregated dataset monitoring results are stored in a NoSQL storage (OpenSearch)
with longer retention and visualised with a dedicated Grafana dashboard that uses OpenSearch
as data source. The dashboard provides fully capable visualizations that offer a time-series
monitoring overview. Secondly, a web service of a single page JQuery DataTables, written
in GoLang and backed by MongoDB, provides fast access to dataset monitoring results for
operational needs, including advanced search capabilities over more than 600 thousand dataset
entries and close to 6 million RSE replica entries.

4. Conclusions and Future Work
CMS Monitoring has evolved with its service stack by developing a multitude of monitoring
services and meeting diverse requirements of different infrastructures, data types, and services
over the years, with the help of supporting infrastructure from CERN IT.

CMS Monitoring will continue to improve its infrastructure and add new services to its
toolbox by adopting more open-search technologies. Rucio and DBS dataset monitoring services
have significantly contributed to the data management operations, and will be further improved
with additional features in case new operational needs arise.

References
[1] CMS Collaboration, JINST 3 S08004 (2008)
[2] I. Bird et al., CERN-LHCC-2014-014, LCG-TDR-002 (2014)
[3] I. Sfiligoi et al., proceedings of the WRI World Congress on Computer Science and Information Engineering,

Vol. 2, 2428-432 (2009)
[4] D. Thain, T. Tannenbaum, and M. Livny, Concurrency and Computation: Practice and Experience, Vol. 17,

No. 2-4, 323-356 (2005)
[5] T. Ivanov et al., EPJ Web Conf, 03006 (2019)
[6] M. Giffels, Y. Guo, V. Kuznetsov, N. Magini and T. Wildish, J. Phys.: Conf. Ser., Vol. 513, Issue 4 (2014)
[7] J. Rehn, et al. Proc. CHEP06, Computing in High Energy Physics, Mumbai, India (2006).
[8] M. Barisits, T. Beermann, F. Berghaus, et al. Comput Softw Big Sci (2019) 3: 11
[9] C. Ariza-Porras, V. Kuznetsov, F. Legger, Comput Softw Big Sci (2021) 5:5
[10] A. Aimar, et al., J. Phys.: Conf. Ser. 898 (2017) 092033
[11] Apache Projects, https://projects.apache.org/projects.html (2023), accessed: 2023-02-18
[12] Elastic Stack, https://www.elastic.co/elastic-stack/ (2023), accessed: 2023-02-18
[13] Grafana, http://grafana.org (2023), accessed: 2023-02-18
[14] Kubernetes, https://kubernetes.io/ (2023), accessed: 2023-02-18
[15] Prometheus, AM, https://prometheus.io/docs/introduction/overview/ (2023), accessed: 2023-02-18
[16] VictoriaMetrics, https://victoriametrics.com/ (2023), accessed: 2023-02-18
[17] InfluxDB, https://www.influxdata.com/time-series-platform/influxdb/ (2023), accessed: 2023-02-18
[18] VictoriaMetrics at CMS https://docs.victoriametrics.com/CaseStudies.html#cern (2020)
[19] NATS https://nats.io/ (2023), accessed: 2023-02-18
[20] E. Vaandering et al., EPJ Web of Conferences 245, 04033 (2020)
[21] V. Kuznetsov et al. J. Phys.: Conf. Ser. 219 042043 (2010)
[22] Rucio Dataset Monitoring Web Service, https://github.com/dmwm/CMSMonitoring/tree/master/rucio-d

ataset-monitoring (2022)

https://projects.apache.org/projects.html
https://www.elastic.co/elastic-stack/
http://grafana.org
https://kubernetes.io/
https://prometheus.io/docs/introduction/overview/
https://victoriametrics.com/
https://www.influxdata.com/time-series-platform/influxdb/
https://docs.victoriametrics.com/CaseStudies.html#cern
https://nats.io/
https://github.com/dmwm/CMSMonitoring/tree/master/rucio-dataset-monitoring
https://github.com/dmwm/CMSMonitoring/tree/master/rucio-dataset-monitoring

