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Abstract: Rate of transferring data is one of the most important aspects in science especially
when it comes to high computation performance. In most cases, the prerequisite of
computations is data while data occasionally not stored locally, it needs to be transferred
remotely. Thus, finding the best way to transfer data into the computation location (GPU)
plays a critical role in performance of computations. Different methods applied in transferring
data implementing Open MPI with CUDA libraries and Mellanox hardware are chosen in this
paper for demonstration. The results, remote data can be achieved as fast as local data or
faster when using Remote Direct Memory Access (RDMA) or RDMA Over Converged
Ethernet (RoCE).

1. Introduction
The main purpose of this experiment is to find the most efficient method of transferring data over a
network connection from a client machine to a remote GPU in a server machine, performing a
computation on the remote GPU, and transferring the results back to the client. In order to evaluate
the impact of using a remote GPU, we need a reference that is not affected by any network
overhead. Therefore, we use as a reference the performance of a machine that does the same
computation on a local GPU. Naively, the local GPU should be faster compared to any method that
uses a remote GPU.

Figure 1.the entire experiment devices and parts.
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2. Hardware
The measurements were performed on two pairs of machines.
The first pair is equipped with dual Intel Xeon Gold 6130[1] "Skylake" CPUs (with PCIe 3.0),
Mellanox ConnectX-5 100Gb/s network cards[2] that can operate in InfiniBand and RDMA over
Converged Ethernet (RoCE) mode, and Intel 10Gb/s Ethernet network cards; one of the two
machines is equipped with an NVIDIA Tesla T4 GPU[3]; the machines are connected to each other
via both Intel and Mellanox cards.
The second pair is equipped with a single AMD EPYC 7502P[4] "Rome" CPU (with PCIe 4.0),
Mellanox ConnectX-5 Ex 100Gb/s network cards that can operate in InfiniBand and RoCE mode,
and Broadcom NetXtreme 1Gb/s Ethernet network cards; one of the two machines is equipped with
an NVIDIA A10 GPU[5]; the machines are connected to each other via both Broadcom and
Mellanox cards.
The Broadcom and Intel cards support only the standard IP-over-Ethernet protocol. The Mellanox
cards have been tested using the InfiniBand, RoCE, and IP-over-InfiniBand protocols.

3. Software
To perform the measurements using both local and remote GPUs we wrote two applications: a first
one for programming a local GPU, cudaTimeMeasurment, and a second one for programming
a remote GPU, mpiCudaGeneric. Figure 2 shows the different parts of the experiment. Both
programs generate two arrays of single precision floating point numbers with a size variable
between 10 and 400 million elements, then transfer them to the GPU to perform a computation, and
copy the resulting array back to the host memory. The GPU simply computes the pairwise sum of
the two arrays; to emulate the impact of a more complex computation, the sum can be repeated an
arbitrary number of times. Finally, the result is compared with the result of the same operation
performed on the CPU; if the results are correct, the program prints the amount of time spent in the
various parts of the task: data transfers and GPU computations. Both programs use CUDA 11.5[6]
to program the GPUs.
The mpiCudaGeneric application uses the Open MPI 4.1[7] framework and optionally the Unified
Communication X (UCX)[8] library for the inter-process communications. The data copies from the
client machine to the GPU in the server machines have been implemented in different ways: in "part
1", the data is copied to a buffer on the server pageable host memory, and from there to the GPU
memory; in "part 2", the data is copied directly to a buffer in pinned host memory, which supports a
faster copy to the GPU memory. When using the Mellanox cards in InfiniBand or RoCE mode with
the UCX library, the communication with the remote GPU can take advantage of the NVIDIA
GPUDirect Remote Direct Memory Access (RDMA) to transfer the data directly to or from the
remote GPU memory, bypassing the machine's host memory. This is done in "part 3", where the
data is copied directly from the client host memory to the server's GPU memory.
The cmsenv_mpirun script sets up the environment for running the local and remote
applications, then calls mpirun and passes it the user application and its parameters.
An example can be seen in Figure 2.

cmsenv_mpirun\
-H <client> -np 1 --mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 -- \
./mpiCudaGeneric -t1 -a10 -p111333333 -s1000 -f : \
-H <server> -np 1 --mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 -x UCX_IB_GPU_DIRECT_RDMA=yes -- \
<path>/mpiCudaGeneric -t1 -a10 -p111333333 -s1000

Figure 2. example to run the mpiCudaGeneric application on the client and server machines. The --mca pml ucx instructs
Open MPI to use the UCX transport library. The -x options pass additional configuration to UCX, for example, "-x
UCX_IB_GPU_DIRECT_RDMA=yes" to explicitly enable RDMA . The -t1 -a10 -p111333333 -s1000 parameters
instruct the mpiCudaGeneric to run the "part 3" measurement six times, each repeated ten times, with a buffer of 1000
elements.



Figure 3, Architecture of time measurements in the local experiment (left). Architecture of time measurements in part 1
and 2 (right). Architecture of time measurements in part 3 (bottom).

3.1. Local GPUs
Working with a local GPU, the time measurements are taken in four points as shown in Figure 3:
the Time Input Preparations measures the time to copy the data from pageable host memory to
pinned host memory, then copy it from pinned host memory to GPU memory; the Time
Operations on CPU Point of View is the time spent performing the computation, as measured on
the CPU; the Time Operations on Device Point of View is the same time measured on the GPU;
finally, the Time Output Preparations measures the time spent copying the results from GPU
memory to pinned host memory, and then to pageable memory.
Thus, the total time spent performing all the copies can be extracted from the total time spent on the
server, minus the time spent by the GPU performing the computations:
Latency = Time input preparations + Time Operations on Server + Time output preparations
- Time Operations on Device.

3.2. Remote GPUs
While the measurements working with remote GPUs are more complex, as shown in the right side
of Figure 3, they follow a similar scheme. When performing copies using an intermediate buffer on
the server host (top), the overall measurement must include the time spent transferring the data first
to the server host memory, and then from there to the GPU memory. When using an RDMA transfer
like InfiniBand or RoCE (bottom) there is no intermediate step.
In any case, the time spent performing all the copies from the client to the remote GPU can be

extracted from the total time as measured by the client, minus the time spent by the GPU
performing the computations:
Latency = Time input preparation for client + Time Operations client point of view + Time
output preparations for client - Time operations GPU point of view



4. Results
The measurement process involves first warming up the GPU by running "part 1" of the program
three times as shown in Figure 2. Next, the actual measurement is performed six times, with the
average and standard deviation extracted for each run. This entire process is repeated ten times for
each step, and the measurement with the smallest standard deviation is used as the representative
value.
The size of the data buffers is gradually increased from 10 to 400 million elements, as shown in
Figure 4 (right) for the A10 GPU. For the T4 GPU (Figure 4, left), the buffer size is limited to 28
million elements due to PCIe BAR size limitations of 128 MB.
Figure 5 shows a comparison of the data transfer performance for local GPUs and remote GPUs
that rely on Remote Direct Memory Access (RDMA) for several key buffer sizes: 10k, 1M, and
28M elements for the T4 (left), the same buffer sizes plus 100M elements for the A10 (right).
In Figure 6, a similar comparison is shown for different interconnects and transfer methods that do
not rely on RDMA. It is interesting to note that these methods can reach the maximum buffer size
of 400M elements for both the T4 (left) and A10 (right) GPUs because they don’t rely on RDMA.

Figure 4. Transfer time in milliseconds vs. buffer size in elements for local, remote over InfiniBand (with RDMA), and and RoCE (with
RDMA) on a T4 GPU (left) and an A10 GPU (right).

Figure 5. Transfer time in milliseconds for selected buffers sizes of 10k, 1M, 28M and 100M elements for local, remote over InfiniBand
(with RDMA), and RoCE (with RDMA) on a T4 GPU (left) and an A10 GPU (right).
RDMA transfers to a T4 GPU are limited to about 30M elements.

Figure 6. Transfer time in milliseconds for selected buffer sizes of 10k, 1M, 28M and 100M elements for local transfers and different remote
protocols (without RDMA) on a T4 GPU (left) and an A10 GPU (right).



5. Conclusions
As expected, the Mellanox cards are significantly faster than the Ethernet cards we tested.
Interestingly, in the Mellanox card experiment there was not a significant difference in performance
between the InfiniBand and RoCE protocols. On the other hand, the InfiniBand protocol has better
performance compared with TCP/IP protocol: it is 2 to 3 times faster than the IP-over-InfiniBand
protocol. With respect to RDMA technology, the RDMA capabilities of data transfer to remote
GPUs is as fast (or even faster) than using a local GPU. This is a very encouraging result for
extending the use of GPUs beyond those available on a local machine. Finally, in the absence of
RDMA technology, the measurements illustrate that using an intermediate buffer in pinned host
memory plays a vital role in speeding up the data transfers with a remote GPU.
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