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Abstract. Simulated event samples from Monte-Carlo event generators are a backbone of
the LHC physics programme. However, for Run III, and in particular for the HL-LHC era,
computing budgets are becoming increasingly constrained, while at the same time the push
to higher accuracies is making event generation significantly more expensive. Modern ML
techniques can help with the effort of creating such costly samples. Our focus here is to
embed those techniques within the existing generator frameworks in an effort to increase the
efficiency of certain performance bottlenecks. One of those bottlenecks is the sampling of the
high-dimensional phase space of complex processes, for which a given distribution must be
approximated as closely as possible. This is a generic problem, such that methods can be
explored that have been developed in other fields of physics or even outside of it. In these
proceedings we review studies to increase the phase space sampling efficiency using Normalising
Flows and Nested Sampling in the Sherpa generator framework, with a particular focus on
the unweighting efficiency. We also briefly comment on other approaches to address the given
bottlenecks.

1. Introduction
Monte-Carlo event generators (MCEG) are one of the backbones of collider physics, be it for
simulating background event samples, calibrating detector responses, or even for planning new
colliders [1]. Given the basic building blocks of a Quantum Field Theory (QFT), such as its
Lagrangian, they produce simulated scattering events. The main phases of the simulation are
roughly ordered by the corresponding energy scales. The QFT matrix element for a few outgoing
elementary particles is evaluated at the collision scale using perturbation theory. The parton
shower dresses these particles with Bremsstrahlung emissions, ending with a large number of
low-energy partons. These enter the hadronisation phase, in which these partons transition into
hadrons, which in turn decay until only stable particles remain that are long-lived enough to
enter the detector in the real world. In the simulated world, this is where the detector simulation
would take over, which is however a component of the simulation pipeline which is separate from
MCEG and will therefore not be discussed here.

General-purpose MCEG such as Pythia [2], Herwig [3, 4] and Sherpa [5], potentially
combined with tree-level or loop matrix element generators, have become increasingly precise
tools, incorporating higher orders of perturbation theory in the matrix element calculation and
in the parton shower simulation and allowing to include higher multiplicity matrix elements, as
required by experimental analyses and phenomenological studies. Especially since the discovery



of the Higgs boson [6, 7], the focus of these studies is shifting to high-precision measurements
and searches for increasingly subtle deviations potentially induced by New Physics.

This, alongside the very dynamic and general-purpose nature of the most-commonly used
MCEG codes result in large computational costs of high-fidelity event samples, which are e.g.
produced by ATLAS and CMS to serve many of their analyses. This is particularly true for
standard-candle processes such as the production of a vector boson or a top-antitop quark pair
in association with additional jet emissions. Their production makes up a significant part of
the overall computing budget, and is projected to rise significantly in the upcoming HL-LHC
era [8, 9].

This high cost naturally gives rise to the question if modern Machine Learning (ML) methods
can be used to reduce it. Of course, traditional ML methods have been part of MCEG from the
beginning. For example, adaptive algorithms are used to make sampling the phase space of the
matrix element configurations more efficient, e.g. combining Vegas importance sampling [10]
with an adaptive multi-channel Monte-Carlo [11]. However, the efficiency of this sampling,
which even after optimisation can be very low for complex processes, combined with the high
cost of the sampled integrand (i.e. the scattering matrix element) has been shown to be the
bottleneck of the event generation with Sherpa for typical setups [12, 13]. A better efficiency
would not only reduce the cost and ensure that the HL-LHC physics programme can succeed [8],
but would also unlock new physics opportunities, by allowing for even better precision or higher
multiplicities to be explored. Therefore, we will concentrate in these proceedings on the question
whether modern ML techniques can be used to increase the efficiency.

Two clarifications are in order here. First note that the issue is indeed fairly generic and
that we discuss methods that are relevant for any sampling/integration problem with similar
characteristics. Secondly, we are here exclusively interested in applications, for which an
insufficiently trained model only leads to a degradation of the achieved efficiency, but has
no impact on the physics prediction of the simulation. The reason is that most applications
of MCEG require faithful predictions, ones for which the physical input is precisely known
and for which the uncertainty can be quantified. Making this a strict requirement sets our
applications somewhat apart from attempts to replace (parts of) the MCEG toolchain with
generative models [14, 15, 16, 17, 18], where great care must be taken to ensure that uncertainties
are faithfully estimated and that the physics is correctly described not only in the bulk of the
distributions of physical observables, but also in the tails, which are often important in the
search for New Physics.

After discussing in more detail the computing challenges in question in Sec. 2 we describe
the approaches of Normalising Flows in Sec. 3, and Nested Sampling in Sec. 4. After shortly
visiting other approaches in Sec. 5 we conclude in Sec. 6.

2. Computing challenges in phase-space integration
The ATLAS Software and Computing HL-LHC Roadmap presents predictions showing a possible
overshoot of the computing requirements with respect to the computing budget by up to a factor
of four, depending on the assumptions made [9]. As reproduced in Fig. 1, MCEG (here labelled
“EvGen”) can in one scenario become the largest consumer, using 20% of the overall computing
budget by ATLAS. While this finding is partially attributable to the assumed improvements in
detector simulation efficiency in the given scenario, the actual numbers are not far from this
projection, and MCEG computing usually accounts for 5%–20% of the overall ATLAS and
CMS computing budgets. It is therefore vital to make the toolchain ready for the increased
requirements of the HL-LHC era. When we look into where computing time is spent for
generating a typical high-statistics unweighted event sample using Sherpa (e.g. Z production
in association with up to two additional jets at NLO in QCD and up to 3 more jets at LO),
as given in Fig. 2, we find that more than two thirds of the overall computing time is spent
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Figure 1. ATLAS computing budget as
projected for 2031, taken from [9]. MCEG
(here: “EvGen”) amounts to 20% of the
overall computing in the given scenario.
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Figure 2. Computing time for the different
parts of a MCEG simulation of a typical high-
statistics sample used by experiments. Figure
taken from [13].

evaluating tree-level matrix elements (34%) and generating phase-space points (35%).
While improving the performance of these two bottlenecks can be done independently and

will shrink the respective pieces of the pie chart, we can actually shrink both pieces at the same
time if we find a way to increase the unweighting efficiency ϵ = ⟨Ntrials⟩−1, where ⟨Ntrials⟩ is
the average number of trial Monte-Carlo points per accepted point/event in the unweighting
procedure.1 For Z + jets production at LO, the phase-space efficiency of Sherpa drops from
O(10−1) for one additional jet to O(10−4) for five additional jets [19]. The reason for these
rather low efficiencies is threefold. The integral to be evaluated,

σpp→Xn =
∑
ab

∫
dxadxb dΦn fa(xa, µ

2
F )fb(xb, µ

2
F ) |Mab→Xn |2 Θn(p1, . . . , pn), (1)

contains with fafb|M|2 (the parton density functions of the incoming protons times the matrix
element squared) a multi-modal, wildly fluctuating function with a number of (integrable)
singularities. Moreover, it is subject to non-trivial acceptance cuts Θn(p1, . . . , pn) throughout
phase space, introducing discontinuities. And finally, the number of dimensions dim[Φn] = 3n−4
is quite high, e.g. dim[Φ7] = 17 for the aforementioned Z plus five jet production.

It is important to note at this point that MCEG typically use knowledge about the physical
structure of fafb|M|2 to construct channels in a multi-channel Monte-Carlo, mapping out
prominent features/singularities. While not all features are known, or can be easily determined
in a generic program, this procedure has been invaluable to render the integration problem
computationally tractable. Each channel is then further optimised using an adaptive remapping
of the sampling space into the latent space with the Vegas algorithm [10]. This works well as
long as the integrand can be factorised along the dimensions of the integration volume, which
is a limitation of the Vegas algorithm. But even after the separation of the channels, this is
not the case here. A modern ML method might be able to provide a more flexible mapping.
Based on this one could decide to use a single channel and sample points globally. Instead

1 Note that the unweighting efficiency is only one of the figures of merit, the other one would be the estimator of the
variance, Var = (⟨w2⟩−⟨w⟩2)/N , where w denotes the weight of the individual events. A small variance is better,
and usually—but not necessarily—comes with a better unweighting efficiency. Since large sample production
makes use of unweighting which leads to smaller data sets, we concentrate on the unweighting efficiency here.
For a more detailed discussion, including the effect of the optimisations on the variance, we refer to the original
publications.
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Figure 3. For each channel of the multi-channel Monte Carlo, (uniform) random numbers
from a latent space are first mapped to the intermediary latent space of a phase-space mapping,
which then maps into the target space of the physical momenta entering the n-particle matrix
element Mn.

one can also leave the multi-channel structure in place to simplify the problem and just replace
or complement Vegas. This allows one to profit from the physics knowledge built into the
multi-channel construction. We explore this possibility in the next section.

3. Normalising Flows
Figure 3 shows how (uniform) random numbers of a d-dimensional unit cube latent space are
first mapped using an optimiser such as Vegas to an intermediary unit cube latent space, which
in turn is mapped by a channel mapping to the physical momenta. There is one such chain of
mappings per phase-space channel of the multi-channel Monte Carlo.

If we want to use the strategy laid out in the previous section to use modern ML methods as a
replacement for the first (Vegas) mapping, the provided mapping must be bijective: Surjectivity
is needed to guarantee full phase-space coverage, and injectivity is required to be able to calculate
the inverse Jacobian for each phase-space point, which is an input for the phase-space weight
of the generated event. Moreover, the unweighting efficiency must be at least as good as what
we can achieve with Vegas, and the generation of points and their phase-space weights should
not be too expensive computationally. In particular the scaling with the number of dimensions
should be under control.

A Normalising flow (NF) is a possible candidate. NFs have been applied exploratively to
several problems in high-energy physics and adjacent fields [20, 21, 22, 23, 24, 25, 26, 27, 19].
Bijectivity is guaranteed by construction, and the evaluation of the inverse Jacobian is typically
cheap with a computational complexity of O(d), where d is the number of dimensions. At the
same time, NFs allow for expressive non-linear variable transformations.

In Fig. 4 (left), we show the collected results of [20] and [22] for using NFs as a Vegas
replacement to sample the phase space of various processes. Details on the respective
methodologies and parameter choices are beyond the scope of these proceedings, and we refer the
reader to the two original publications. The y axis shows the gain in efficiency, i.e. ϵNF/ϵVegas,
while the x axis gives the number of kinematical dimensions d (ignoring hyperparameters, e.g.
to choose a particular channel). The circles show results from [22] for vector-boson plus jet
production processes at the LHC, while the triangles show results from [20] for the decay of a
top quark t, the production of a top-antitop quark pair at a lepton-lepton collider, and gluonic
scattering processes at a fixed centre-of-mass energy with n = 3, 4 gluons in the final state.
One finds promising gains of more than 3, but these gains quickly vanish for higher numbers
of dimensions, until eventually the gain drops below 1, i.e. using Vegas becomes more efficient
than using NFs.

In Fig. 4 (right), we show more gain factors, which have been reported in [19]. The new
simple phase-space generator Chili is used, and it is configured to only use the single phase-
space mapping

dxa dxb dΦn(a, b; 1, . . . , n) =
2π

s

[
n−1∏
i=1

1

16π2
dp2i,⊥ dyi

dϕi

2π

]
dyn, (2)



2 4 6 8 10 12 14 16

number of kinematical dimensions d

0.5

1.0

1.5

2.0

2.5

3.0

ε N
F
/ε

V
E

G
A

S

W+ + jets

W− + jets

Z + jets

W+ + jets (RS)

W− + jets (RS)

Z + jets (RS)

Γt

e+e− → tt̄

gg → n g

2 4 6 8 10 12 14 16

number of kinematical dimensions d

W+ + jets

Z + jets

h + jets

tt̄ + jets

γ + jets

QCD jets

Figure 4. The ratio of unweighting efficiencies ϵ using Normalising Flows and Vegas versus
the number of kinematical dimensions for various physics processes. The data is taken from [22]
(left, circles), [20, 28] (left, triangles) and [19] (right).

such that no hyperparameters are required to choose between different channels. Despite this
simplification, there is no improvement to be found with respect to the older results discussed
above. However, it should be stressed that this study is only a proof-of-principle for the given
interfaces to the NF training frameworks i-Flow and MadNis [21, 24], and no attempt has
been made to optimise the training.

In all cases in Fig. 4, we eventually find decreasing gains with increasing dimensionality. This
is discouraging, since speed improvements are most relevant for higher particle multiplicities.
However, it is likely that this is at least partially attributable to a lack of training. The
bottleneck of the training for high dimensionalities has in all cases been the serial evaluation
of the matrix elements on the CPU. The recent advances of GPU-accelerated matrix-element
generators [29, 30, 31, 32] are therefore a promising prospect, and it is worth revisiting the
Normalising Flows when these generators become available.

4. Nested Sampling
We now explore the application of Nested Sampling (NS) to our problem of phase-space
integration, as reported in [33]. NS is an iterative Bayesian inference algorithm [34]. In the
first iteration step, a number of points is uniformly sampled. Then, the point corresponding
to the lowest value of the target function is identified and replaced by another point under
the constraint that it gives a higher value. After repeating this procedure until an appropriate
termination criterion has been reached, the union of the discarded points and the remaining
live points forms a representative sample of the target distribution. Existing applications range
from cosmology through statistical thermodynamics to material science, and there is a range
of tools that implement the central sampling algorithm and/or perform auxiliary tasks. One of
these tools is PolyChord [35], and it is used in [33], along with the anesthetic tool to join
NS samples [36]. We refer to [33] for more details, in particular for the hyperparameters used
to steer PolyChord.
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Figure 5. The ratio of unweighting efficiencies ϵ using Nested Sampling and Vegas versus the
number of kinematical dimensions for gluon scattering with n gluons in the final state. The data
is taken from [33]. Note that in contrast to Fig. 4 here Vegas refers to a stand-alone mapping
as a single channel without prior knowledge.

Note that the method as used in [33] uses no prior knowledge about the target, i.e. the starting
point for the iteration is a flat prior. In contrast to the NF applications in Sec. 3, this means
that no channel mappings and in particular no multi-channel Monte Carlo is used. Hence, the
NS algorithm must perform the full adaptation to the multi-modal and wildly fluctuating target
function. The posterior of the iterative inference should match the target distribution.

Figure 5 shows the gains with respect to Vegas optimisation that were achieved, in terms
of the unweighting efficiency ϵ. The gains are rather high, reaching about 10 for the gg → 5g
process, with the number of dimensions being 11. As can be seen in [33], the results from the
Vegas efficiency decline rapidly, while the NS efficiency remains almost constant. This is a very
promising result, in particular with regard to the favourable scaling.

5. Other approaches
There are three other approaches to address the event generation bottleneck described in Sec. 2
that we would like to highlight here. None of these in itself leads to an improvement of the
unweighting efficiency, but instead they focus on the reduction of the computational effort to
calculate (unweighted) events.

The first one has already been mentioned towards the end of Sec. 3, namely the use of GPU
acceleration for matrix-element evaluation and possibly also phase-space generation. This has
the potential to drastically decrease the computation time required per phase-space point, such
that a low efficiency becomes less of an issue. Porting both the matrix element and the phase
space is highly desirable to avoid the need to copy phase-space points to the GPU. As long as the
memory requirements are under control, the independence of the Monte-Carlo points means that
the use of an accelerator such as a GPU is a perfect fit, allowing to parallelise the event generation
on the device, instead of generating events serially on the CPU. GPU-accelerated matrix-element
generators are currently an object of active research and development [29, 30, 31, 32].

The second approach is the use of pilot runs in existing Monte-Carlo frameworks. These make
sure that as much work as possible is postponed until after the unweighting, i.e. is only done
for accepted events. In Sherpa, a very significant speed-up of about a factor of 40 has recently
been achieved for a typical ATLAS V+jets setup, mostly but not exclusively by postponing
the calculation of variation weights needed for the evaluation of theory uncertainties in that



way [13].
The third optimisation strategy that is actively explored is the use of approximate and

computationally cheap matrix-element models for trial events, so-called surrogates. When
surrogates are used, the unweighting becomes a two-step procedure. First the trial events are
unweighted against the nominal weight maximum. If this is accepted, a second accept/reject
step is done against the ratio to the nominal matrix element. This procedure ensures that the
distribution of the final sample of unweighted events is correct. Because the computationally
expensive matrix element is only evaluated if the first unweighting step is accepted, the time
improvement can be significant. Since a low efficiency of the second unweighting step would
decrease the overall unweighting efficiency, it must be ensured that the approximate model
is as faithful as possible to the exact matrix element. Recently, this technique of “surrogate
unweighting” has been explored using deep neural networks [37]. Speed gain factors between 2
and 10 have been reported. In a follow-up study, a more sophisticated neural network model
constructed on the basis of the factorisation properties of QCD matrix elements, as proposed
in Ref. [38], has been applied to multi-jet production [39]. While this is currently limited to
colour-summed matrix elements, the speed gain factors have been found to be very significant,
between 16 and 350. These results are very promising, and the technique provides an excellent
use case for sophisticated modern ML inspired ME emulators [40, 41].

6. Conclusions
We have presented several approaches to address the computational bottleneck of Monte Carlo
event generation in the context of high-energy physics, namely the expensive evaluation of
matrix elements and the low efficiency of the phase-space sampling. The underlying problem
to efficiently integrate and sample from a complex multi-modal distribution with non-trivial
discontinuities is very generic and of interdisciplinary relevance, and there is possible crosstalk
to other fields such as Machine Learning, lattice field theory, cosmology and industry. The
two approaches mainly discussed in these proceedings, Normalising Flows and Nested Sampling,
have indeed been developed outside of High-Energy Physics and are now being explored in this
context.

Normalising Flows promise an improvement in the efficiency, since they can be used as a
more flexible replacement for the conventional Vegas optimiser. While the proof-of-principle
studies so far indeed showed improvements for lower dimensionalities, the scaling behaviour
seemed less favourable. Eventually, the conventional approach proves to be hard to improve
upon. This however could be an effect of insufficient training, which is very expensive when
the target function is evaluated serially on a CPU. GPU-accelerated matrix elements are highly
desirable for further research into the use of Normalising Flows.

Nested Sampling has been shown to give good improvements and a favourable scaling
behaviour with the number of dimensions for the test case of gluon scattering. It will be
interesting to see if follow-up studies can successfully generalise these findings to other and/or
more complex processes.

We also briefly discussed other approaches which alleviate the issue of the low phase-space
efficiency by decreasing the time needed to evaluate a given phase-space point, namely the
already mentioned use of GPU-accelerated matrix elements, and the use of pilot runs and
surrogate unweighting. All of these show great promise, and pilot runs have already been
integrated into the existing event generation pipeline.

Making at least a subset of the above methods production-ready and integrating them into
the existing pipeline is indeed required to fully utilise the upcoming HL-LHC era.
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