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Abstract. Fast data generation based on Machine Learning has become a major research
topic in particle physics. This is mainly because the Monte Carlo simulation approach is
computationally challenging for future colliders, which will have a significantly higher luminosity.
The generation of collider data is similar to point cloud generation with complex correlations
between the points. In this study, the generation of jets with up to 30 constituents with
Normalising Flows using Rational Quadratic Spline coupling layers is investigated. Without
conditioning on the jet mass, our Normalising Flows are unable to model all correlations in
data correctly, which is evident when comparing the invariant jet mass distributions between
Monte Carlo simulated and model-generated data. Using the invariant mass as a condition
for the coupling transformation enhances the performance on all tracked metrics. In addition,
we demonstrate how to sample the original mass distribution by interpolating the empirical
cumulative distribution function. Similarly, the variable number of constituents is taken care of
by introducing an additional condition on the number of constituents in the jet. Furthermore,
we study the usefulness of including an additional mass constraint in the loss term. On the
JetNet dataset, our model yields a stable and quick training and performs comparably to the
state-of-the-art.

1. Introduction
High-Energy Physics (HEP) has benefited from the advances in Machine Learning (ML) since
the analysis of HEP data is a high-dimensional multivariate problem. ML has been applied in
multiple ways ranging from classification to regression tasks [1]. In HEP, detailed simulations
of the physical processes are commonly available, which describe the details of the experimental
measurement with high precision. These Monte Carlo simulations (MC) provide labelled data
and are needed in large numbers to cover the extreme areas of the physical phase space. The
simulations for the CMS detector at the Large Hadron Collider (LHC), for example, require
about 50% [2] of the current CMS computing budget. An even larger number of simulations
will be needed for the upcoming high-luminosity phase of the LHC [3]. Therefore, generative
modelling with Deep Learning (DL), which might well be able to reduce the computational time
by more than an order of magnitude, sparked great interest in the HEP community.

In this study, the generation of jets is investigated using different Normalising Flow
(NF) [4, 5, 6, 7] architectures, which are motivated by their stable convergence. A powerful
summary statistic used in this study is the invariant mass of the jet, which depends on the



features of all constituents forming the jet. Thus the distribution for the mass calculated from
ML-generated jets should describe the one calculated from MC simulation very well. This paper
first provides a summary of related work in the field of generative models for jet generation
in Section 2, which also introduces the dataset on which this research was conducted. This is
followed by a description of the architecture of the proposed models in Section 3. In Section 4
the various visualisations of the generated data are presented and compared to holdout data
for different architectures using the same procedure as [8]. The results are then compared to
state-of-the-art results from the field and are briefly discussed in Section 5. Finally, a conclusion
is given in Section 6, which highlights the important aspects of this approach and plans for
future work.

2. Related Work
Data of particle clouds with up to 30 particles and 3 features each is provided in Ref. [9]
for bench-marking different generative models. The authors also propose the message-passing
GAN [8](MPGAN) architecture which outperforms state-of-the-art generative models by orders
of magnitude on nearly every metric. This study contributes to a comparison of different
Normalizing Flow (NF) approaches to this problem, whereas the original study [10] only
considered GANs. However, GANs suffer from unstable training [11] and generally need a
strong inductive bias in their architecture to perform well on the problem as seen in [8].

2.1. Discrete Normalising Flows
Discrete Normalising Flows [12] are a relatively new subject in HEP, a conclusive overview is
given in Refs. [6] and [7]. Invertible and differentiable transformations f are sought, which
transform the training data distribution X to a Normal Gaussian distribution Z. If the model
can transform the data to a Gaussian sufficiently well, the data distribution is sampled by
first drawing from a normal distribution and applying the inverted transformations. This study
considers only NFs with coupling layers, as auto-regressive models suffer from either slow training
or generation [6].

2.2. Dataset
In this study, the JetNet [8] datasets are used. There are 3 different datasets available, each
containing jets with an energy of about 1 TeV, with each jet containing up to 30 constituents.
The difference in the datasets lies in the jet-initiating parton. Datasets for top quark, light
quark and gluon initiated jets are studied. The jet constituents are considered to be massless
and can therefore be described by their 3-momenta or equivalently by transverse momentum
pT , pseudorapidity η, and azimuthal angle ϕ. In the JetNet dataset, these variables are given

relative to the jet axs: ηreli = ηparticlei −ηjet, ϕrel
i = (ϕparticle

i −ϕjet) mod 2π, and prelT,i = pparticleT.i /pjetT ,
where i runs over the particles in a jet. It is worth noting that the jet axis is determined using
all particles generated with PYTHIA [13] initially, but due to the dataset’s constraint of 30
particles, the jets in the dataset are not properly centered. The invariant mass mjet of a jet is
an essential high-level feature containing important physics information. It is a global variable
that depends on the correlations between the single jet constituents and provides therefore an
important metric for the performance of the generative model. For the relative quantities above,
we can define the relative jet mass as (mrel)2 = (

∑
iE

rel
i )2 − (

∑
i p⃗

rel
i )2 = m2

jet/p
2
T,jet.

3. Architecture
The NFs used in this study consist of multiple stacked coupling layers, where each coupling
layer splits the input features into two (in this study equally sized) sets. The former is mapped
with an identity transformation, while to the latter a non-trivial parameterised element-wise



transformation is applied. We studied the feasibility of rational quadratic monotonic splines [14]
a transformation.

3.1. Mass Conditioning
Normalising flows are conditioned by adding variables to the input of the Neural Networks
(NNs) predicting the coupling transformations’ parameters. These additional variables are not
transformed. Conditioning enhances the expressivity of the transformation, as more information
is given to the network predicting the parameters of the coupling layers. In this study, the
invariant jet mass m and the number of particles per jet n were tried for conditioning. These
variables also need to be supplied when the NF is used in the generating direction and thus
need to be generated independently. For one conditioning variable, this is done by transforming
the variable with its cumulative distribution function to a uniform distribution. This one-
dimensional transformation is then interpolated with monotonic piece-wise cubic Hermite
polynomials [15], which is invertible. If two conditions are used an autoregressive approach
is used: first the number of particles is sampled from its empirical probability mass function and
the previous approach is applied to the mass distribution conditioned on the number particles.
This autoregressive approach is especially viable here because the number of particles per jet is
discrete and thus there are a finite number of conditional mass distributions. In the following,
the variables that are used to condition are given in brackets after the name of the model.

3.2. Mass Constraint
To further improve the mass modelling, a mass constraint is introduced. Here, another loss term
is added: the L2 norm between the mass calculated from a generated jet and the value of the
mass the generated jet has been conditioned with:

LMSE = |mcond −mgen(xgen)|2 (1)

It is important to note that this means that the NF is used in both directions during one training
step.

3.3. Variable Sized Particle Clouds
As NFs need to be invertible, there are major constraints on the dimension of the generated data
space, disallowing the generation of a variable amount of particles. In this study, point clouds
with fewer than 30 particles were zero-padded. Noise in the order of O(10−7) was added to the
zero-padded particles as otherwise, it would be an ill-posed problem in the context of normalising
flows. For the case where the number of particles is given as a condition, the particles coming
after the value of the condition are set to zero.

4. Results
In this section results for 3 different architectures are presented. For each architecture, an
equally sized random search was conducted. Results are presented for all 3 datasets. The model
needs 9.77 ± 0.04 µs for the sampling of a jet on an NVIDIA P100 when using a batch size of
50000. The training time for all models ranges from 1 to 2 hours on an NVIDIA P100.

4.1. Evaluation Metrics
The Wasserstein distance is a powerful metric for comparing the generated distribution with the
real data distributions, but it is not tractable in more than one dimension. Thus to evaluate
the performance of the generative model the Wasserstein distances W1 between the inclusive
distributions of (ηrel, ϕrel, prelT ) of the MC-simulated and the flow-generated jets are considered.
Additionally, the Wasserstein distance between energy flow polynomials [16] and between the



invariant mass of the jet are considered. Other metrics used include coverage (COV) [17] and
minimum matching distance (MMD) [17] and Fréchet ParticleNet Distance (FPND) [8].

4.2. Performance comparison
The evaluation metrics are calculated as in [8], using batches of 10000 for Wasserstein distances
and 50000 for FPND. Table 1 shows the results for the different architectures - including
Vanilla NF (VNF), conditioned NF (CNF), and conditioned and constrained NF (CCNF) -
and compared to the state-of-the-art [8] (MP-MP, MP-LFC). For architectures that rely on
conditioning, the variables used for conditioning are given in the brackets.

Table 1. Comparison between the best performing models from [8], with 5 different model from
this study. No systematic differences can be seen except for the FPND metric and WEFP

1 on the
top-quark data set.
Jet Class Model WM

1 × 103 WP
1 × 103 WEFP

1 × 105 FPND COV ↑ MMD

Gluon

MP-MP 0.7± 0.2 0.9± 0.3 0.7± 0.7 0.12 0.56 0.037
MP LFC-MP 0.69± 0.07 1.8± 0.3 0.9± 0.2 0.20 0.54 0.037
VNF 4.3± 0.2 2.2± 0.5 3± 1 1.82 0.53 0.035
CNF (m) 0.9± 0.3 0.5± 0.2 0.8± 0.6 0.53 0.56 0.036
CNF (m,n) 0.8± 0.3 1.2± 0.3 0.8± 0.8 0.31 0.55 0.035
CCNF (m) 0.6± 0.2 0.6± 0.2 1.2± 0.9 0.90 0.54 0.036
CCNF (m,n) 0.7± 0.4 0.9± 0.3 1.1± 0.6 0.54 0.56 0.036

Light Quark

MP-MP 0.6± 0.2 4.9± 0.5 0.7± 0.4 0.35 0.50 0.026
MP LFC-MP 0.7± 0.2 2.6± 0.4 0.9± 0.9 0.08 0.52 0.037
VNF 2.8± 0.6 2.2± 0.4 1.9± 0.6 1.30 0.54 0.024
CNF (m) 0.9± 0.3 1.1± 0.4 0.7± 0.3 0.49 0.53 0.024
CNF (m,n) 1.0± 0.2 4.2± 0.6 0.7± 0.4 0.73 0.53 0.024
CCNF (m) 0.7± 0.2 0.8± 0.5 0.7± 0.4 0.55 0.50 0.025
CCNF (m,n) 0.7± 0.1 4.5± 0.9 1.0± 0.6 1.22 0.50 0.025

Top Quark

MP-MP 0.6± 0.2 2.3± 0.3 2± 1 0.37 0.57 0.071
MP LFC-MP 0.9± 0.3 2.2± 0.7 2± 1 0.93 0.56 0.073
VNF 6.6± 0.6 2.2± 0.5 15± 1 7.76 0.59 0.070
CNF (m) 1.8± 0.5 1.2± 0.4 3± 1 2.62 0.57 0.070
CNF (m,n) 0.55± 0.08 1.7± 0.3 3± 1 2.19 0.57 0.071
CCNF (m) 0.7± 0.2 12.2± 0.5 8± 3 8.52 0.44 0.076
CCNF (m,n) 1.1± 0.5 1.3± 0.4 4.9± 0.7 2.27 0.56 0.073

The inclusive distribution of the particle features as well as the invariant mass distribution
for the top-quark dataset are presented in Fig. 1.

As mentioned previously, the invariant mass is a powerful variable to test the correlation
between the individual jet constituents. In Fig. 2 the mass distribution is shown for the different
configurations. Significant differences can be observed, which are especially evident in the case
of the top-quark sample, where there is more structure in the mass distribution. This structure
is an artefact from the imperfect anti-kT clustering, as in some cases the b quark in the top
decay chain is not added to the jet cone and thus we only see a peak of the W boson. While
the vanilla NF does not learn this feature, the other two models reproduce the ground truth
reasonably well.
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Figure 1. Inclusive histograms of (ηrel, ϕrel, prelT ,mrel) for all particles. Shown are examples for
the top-quark dataset which was trained with the CCNF architecture using 2 conditions.
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Figure 2. Mass distribution for the different models on the top-quark dataset. On the left is
VNF, in the middle CNF (m) and to the right CCNF (m).

5. Discussion
The results indicate that Vanilla NF, while producing acceptable results for individual features
and inclusive distributions, fail to model more complex correlations between particles. This
may be due to the construction of the coupling layers, as only 50% of all features are seen by
the networks in these layers. Using the mass as a condition and constraining it improves the
results, but raises questions about the importance of the latent representation. The results of
the model are comparable to the state-of-the-art on all but the FPND metric. The training of
the NF is significantly simpler and more stable compared to the one of GANs, and the NF seem
to perform well although their architecture is general without a problem specific inductive bias.

6. Conclusion
In this study 3 different architectures for the generation of variable-sized jets are presented.
Whilst the most basic rational quadratic spline flows are unable to model the correlations present
in the training data, conditioning and constraining the flow on the invariant mass of the jet gives
results comparable to the state of the art. As the conditions need to be supplied during sampling,
an additional simple model for sampling a two-dimensional distribution is presented as well. The
model is evaluated on 6 different metrics, and various control plots between the ”real” Monte
Carlo simulated data and the flow-generated data are shown.
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