
Accelerating the DBSCAN clustering algorithm for

low-latency primary vertex reconstruction at the

HL-LHC

Lucas Borgna1, Marco Barbone2, Jiayang Cao2, Andrew Rose1,
Alexander Tapper1, Robert Bainbridge1, Wayne Luk2

1 Department of Physics, Imperial College London, UK.
2 Department of Computing, Imperial College London, UK.

E-mail: l.borgna21@imperial.ac.uk, a.tapper@imperial.ac.uk

Abstract.
In this work we present the adaptation of the popular clustering algorithm DBSCAN to

reconstruct the primary vertex (PV) at the hardware trigger level in collisions at the High-
Luminosity LHC. Nominally, PV reconstruction is performed by a simple histogram-based
algorithm. The main challenge in PV reconstruction is that the particle tracks need to
be processed in a low-latency environment. To achieve this an accelerated version of the
DBSCAN algorithm was developed to run in a Field Programmable Gate Array (FPGA). A
CPU-optimized version of DBSCAN was implemented in C++ to serve as a benchmark for
comparison. The CPU version of DBSCAN resulted in an average PV reconstruction latency of
93 µs , while the FPGA firmware only had a latency of 750 ns resulting in a 127x speedup. The
speedup is a result of running all the input tracks in parallel, which ultimately results in high
resource consumption, of up to 48.6 % of the available logic. Most of the logic was attributed
to the use of sorting networks that allows for the parallel processing of the input tracks. To
optimize the firmware for specific latency and resource usage constraints, the firmware can be
parameterized by the number of input tracks to consider at a time.

1. Introduction
To continue the search for new physics the future High Luminosity Large Hadron Collider (HL-
LHC) will ultimately reach an instantaneous luminosity of 7.5× 1034cm−2s−1. This however
also increases the average number of interactions per crossing (PU) to 200 on average [1].
These changes will bring about two main challenges for any data reconstruction algorithm to
overcome. The first challenge will be to be resilient to the increased background noise and
the second will be to process the larger quantity of space-points while still meeting the latency
requirements. Clustering algorithms are prominent in particle physics as they can create higher
level objects for physics analysis. One of the most popular clustering algorithms is the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), due to its noise resilience and
clustering performance [2]. For these reasons the DBSCAN algorithm is well suited for clustering
applications in the HL-LHC environment. Field Programmable Gate Arrays (FPGAs) can be
used to accelerate certain algorithms and with their associated High-Level Synthesis (HLS) tools,
and using a similar methodology to the one adopted for accelerating Monte Carlo simulation [3],



(a) (b)

Figure 1: a) High pileup event in CMS with 130 interaction vertices [4]. b) Example of how
clustering along the beamline axis can be used to determine the primary vertex.

(a) (b)

Figure 2: a) Main components of the DBSCAN clustering algorithm. b) Illustration of the key
steps in the accelerated DBSCAN algorithm.

the development time can be reduced significantly. As a test-bench the reconstruction of primary
vertices is used as a 1D example.

2. Primary Vertexing at the HL-LHC
The objective of the reconstruction of primary vertices is to locate the position of the hard
scattering event and find all the associated tracks that came from it. Normally tracks are
complicated objects, but in this case is possible to choose a minimal representation of a track
which comprises only of their z0 position and their transverse momentum (pT ) value. The z0
value of a track is where it intersects the beamline (z-axis) of the detector. In the HL-LHC,
the CMS outer tracker will be able to provide hits above 2 GeV to the Level-1 trigger (L1).
The L1 trigger is responsible for the first stage of data reduction, which is a custom hardware
design based FPGAs and has a strict maximum latency of 12.5 µs to make a decision. To make
this decision the L1 system will have to reconstruct tracks from the hits provided by the outer
tracker, with up to 5 µs of the total latency are reserved for this reconstruction [1]. These tracks
will then be processed by the primary vertexing algorithm to support the L1 trigger decision,
which is challenging due to the strict time requirements. Figure 1a shows a recorded event with
high pileup during 2016, which illustrates the complexity of primary vertex reconstruction is in
this noisy environment.

As a baseline, the primary vertices can be reconstructed by using a histogram based approach.
To do this a histogram of the tracks’ z0 coordinate is created, with each track weighted by its



pT . A 3 bin convolution is then used on the histogram. The primary vertex location is then
determined by the bin with the highest peak. This baseline approach is called “FastHisto” and it
naturally provides a good proxy to determine the hard scattering event [1]. Furthermore, it has
a computational complexity of O(nbins+ntracks) and can be executed in an FPGA with minimal
resources and latency. The downside of this method is that it is not resilient to noise, where
high pT noise tracks can overlay the tracks from the primary vertex. The DBSCAN algorithm
can be used to cluster the tracks along the z0 dimension. Then within each cluster, the pT of
each track is summed and the cluster with the highest pT is labelled as the primary vertex. The
median z0 of all the tracks in the primary vertex cluster is then used as the z0 of the primary
vertex [5].

3. Accelerating DBSCAN for primary vertexing
The behaviour of DBSCAN algorithm changes based on the hyperparameters used. Different
hyperparameters lead to different optimisations. Hence, the key in accelerating the DBSCAN
algorithm is to first focus on its two main hyperparameters. The first is called ε, which
represents the maximum distance a neighbouring point can be to be considered part of the
same cluster. The second is the minPts, which is the minimum number of points needed for it
to be considered as a cluster. These parameters are illustrated in Figure 2a. In the context of
HL-LHC primary vertex reconstruction, the optimal set of parameters is minPts = 2 and ε =
0.15 [cm]. Fortunately, because of the value of minPts = 2, it is possible to ignore inner loops
within the algorithm. The second key to accelerate DBSCAN is to first sort the tracks along the
z0 dimension as it allows for tracks to be processed in parallel, which will be exploited by the
FPGA. A bitonic sort method is used to reduce the latency of the sorting [6]. Moreover, a prefix
sum method is used to pre-compute in parallel the pT sums of the clusters [7]. A brief summary
of the computations needed is shown in Algorithm 1, which has been designed to have all of the
for-loops execute in parallel in the FPGA hardware. The algorithm only requires two inputs the
tracks and the ε parameter. In Line 1, the tracks are sorted along the z0 axis. The first loop in
Line 2 is used to determine if the the tracks represents the left boundary of a cluster. A track
is considered to be a left boundary if it is within a distance of ε to the next track along the z0.
The second loop in Line 4 is used to determine the right boundaries of each cluster. Once the
left and right boundaries are identified a vector of the indices of boundaries is created in the
loop in Line 8 and where there is not a boundary the value is filled with ∞. This is done so
that the sorting by the index in Line 13 pairs the left and right boundaries together. This then
maps the indices of tracks to where the clusters begin and end. The loop in Line 14 uses those
indices to compute the median z0 and pT sum for each vertex. Using the median statistic here
is critical as the clusters can have skewed z0 distributions. Lastly, the vertices are sorted by pT
in Line 16 so that the vertex with the highest pT value can be identified as the primary vertex.
An illustration of how the boundaries are used to identify the clusters is shown in Figure 2b.



Algorithm 1: minPts=2 accelerated DBSCAN

input : tracks, ε
output: vertices

1 Sort(tracks) ▷ Sorted by z0
2 for i← 0 to tracks.size do
3 isLeftBoundaries[i]← tracks[i].z0 − tracks[i− 1].z0 ≤ ε

4 for i← 0 to tracks.size do
5 leftEdge ← isLeftBoundaries[i] and not isLeftBoundaries[i+ 1]
6 rightEdge ← not isLeftBoundaries[i] and isLeftBoundaries[i+ 1]
7 isBoundaries[i]← leftEdge or rightEdge

8 for i← 0 to tracks.size do
9 if isBoundaries[i] then

10 boundaryIndices[i]← i
11 else
12 boundaryIndices[i]←∞
13 Sort(boundaryIndices) ▷ Sorted by i
14 for i← 0 to tracks.size by 2 do
15 vertices[i]← CalculateVertex(boundaries[i], boundaries[i+ 1]) ▷ median z0, ΣpT

16 Sort(vertices) ▷ Sorted by pT

4. Testbench for Accelerated DBSCAN
To obtain a benchmark of how the accelerated DBSCAN algorithm performs a CPU version
using C++ was developed. The FPGA implementation was done using a Xilinx VU9P FPGA
within the Maxeler Dataflow Engine (DFE) setup. These results were obtained using a clock
frequency of 100 MHz. In the DFE the tracks are fed from the CPU to the FPGA via a PCI-e
bus. In this case the latency of the PCI-e transfer is not a concern since in the L1 environment
the tracks would be fed directly to the FPGA via optical fibre connections. Unfortunately,
due to the FPGA resource constraints a firmware with 1665 tracks cannot be synthesised. To
understand the performance of the firmware a maximum number of tracks of 232 was used.
Table 1 shows the resource usage of the accelerated DBSCAN firmware with 232 input tracks.
The firmware results in 48.6% of the available logic being used up. As shown in Table 1 the main
consumer of these resources are the sorting networks. A single sorting network, responsible of
sorting the 232 tracks along z0 uses up 11.2 % of the available logic. Another sorting network is
used to sort the boundaryIndices, which also has a size of 232. Lastly, to identify the primary
vertex, a final sorting network is used to sort the vertices in decreasing pT order, which has a
reduced size of 232/minPts = 116. This means that roughly 58 % of the used logic is going
towards the three sorting networks. The latency to process a single event is shown in Table
2. The latency of the CPU optimized version was 93 ms, while the FPGA version achieved a
latency of 0.73 ms, representing a speedup of 127×. This indicates that the FPGA acceleration
is necessary to reach the latency constraints of the L1 trigger system.

5. Conclusions and future work
The results indicate that the DBSCAN algorithm can be accelerated by the FPGA hardware.
In the case of the primary vertex reconstruction with up to 232 input tracks a speedup of 127×
was observed. The speedup is attributed to the high degree of parallelization that is enabled
by pre-processing the input tracks with a sorting network. The downside of using the sorting
operation is that is necessary to utilize a large area of the FPGA resources, preventing the
algorithm to be synthesized for 1665 input tracks.



Resource Use Total Usage [%] Sort only [%]
Logic Utilization 1725099 3546720 48.6 11.2
LUTs 422811 1182240 35.8 7.3
FFs 1302288 2364480 55.1 13.2
DSP 0 6840 0 0
BRAM18 611 4320 14.1 8.3
URAM 118 960 12.3 8.1

Table 1: FPGA resources usage of the accelerated DBSCAN firmware using 232 input tracks.
The sort only column shows how much of the resources are used up by sorting the tracks along
the z0 axis. The chip used here was the Xilinx VU9P.

Hardware CPU FPGA
Execution time [µs] 93 0.73

Table 2: Average execution time for both the CPU optimized and FPGA optimized accelerated
DBSCAN to process events with up to 232 tracks. The FPGA optimized version represents a
127× speedup over the CPU optimized version. The FPGA was running with a conservative
100 MHz clock.

In the future the DBSCAN firmware can be modified to process tracks in batches, which
would avoid having large sorting networks. By doing this the resource usage can be minimized
at the cost of increased latency, which would allow the firmware to be tuned for each application.
This modification would come with additional overheads that would needed to be treated with
care. The first is that processing tracks in batches would require an overlap checking procedure
to merge clusters. This process is quite costly as it has a complexity of O(Ntracks(Ntracks−1)/2).
Moreover, within each batch noise points cannot be ignored and will only be excluded in the
merging procedure, which will require additional resources to account for. Lastly, because of the
batching procedure, there will not be a fully sorted vector of tracks for the median z0 calculation.
This however can potentially be overcome by switching to a weighted mean statistic.

References
[1] Tumasyan A et al. (CMS) 2017 The Phase-2 Upgrade of the CMS Tracker
[2] Ester M, Kriegel H P, Sander J and Xu X 1996 A density-based algorithm for discovering clusters in large

spatial databases with noise KDD’96 (AAAI Press) p 226–231
[3] Barbone M, Howard A, Tapper A, Chen D, Novak M and Luk W 2023 Journal of Physics: Conference Series

2438 012023 URL https://dx.doi.org/10.1088/1742-6596/2438/1/012023

[4] Collaboration C and Mc Cauley T 2016 Collisions recorded by the CMS detector on 14 Oct 2016 during the
high pile-up fill URL https://cds.cern.ch/record/2231915

[5] Cieri D 2018 Development of a Level-1 Track and Vertex Finder for the Phase II CMS experiment upgrade
presented 26 Feb 2018 URL http://cds.cern.ch/record/2317060

[6] Peters H, Schulz-Hildebrandt O and Luttenberger N 2010 Fast in-place sorting with cuda based on bitonic sort
Parallel Processing and Applied Mathematics ed Wyrzykowski R, Dongarra J, Karczewski K andWasniewski
J (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 403–410 ISBN 978-3-642-14390-8

[7] Blelloch G E 2004 URL https://kilthub.cmu.edu/articles/journal_contribution/Prefix_sums_and_

their_applications/6608579

https://dx.doi.org/10.1088/1742-6596/2438/1/012023
https://cds.cern.ch/record/2231915
http://cds.cern.ch/record/2317060
https://kilthub.cmu.edu/articles/journal_contribution/Prefix_sums_and_their_applications/6608579
https://kilthub.cmu.edu/articles/journal_contribution/Prefix_sums_and_their_applications/6608579

