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Abstract. In recent years, there has been a significant increase in the use of the Python
programming language in High Energy Physics (HEP), particularly in the area of data analysis.
Several efforts have been made to facilitate HEP data processing in Python, with Scikit-
HEP and PyROOT being prominent examples. With multiple software packages offering
similar functionalities, it becomes essential to consider their pros and cons before selecting
one for a project. This study aimed to compare the performance of two software tools that
facilitate the conversion of HEP data from the standard ROOT format to Numpy arrays or
pandas dataframes. Our analysis identified the strengths and weaknesses of each tool when it
comes to performance and parallelizability, providing valuable insights for users in selecting an
appropriate package for their project.

1. Introduction
The Python programming language is characterized by an enormous and rapidly growing
ecosystem of software tools that support the analysis and visualization of Big Data, datasets
that are too large or complex to be dealt with by traditional data-processing methods. Examples
include Numpy (numerical computing), pandas (data manipulation), matplotlib (visualization),
and tensorflow (machine learning). With the growing volume and complexity of data produced
by HEP experiments, a complete analysis workflow in Python can provide great benefits.
However, the standard ROOT format common to HEP needs to be first converted to Python-
friendly formats. Two popular approaches to handle such conversion are Uproot [1], a library
for reading and writing ROOT files in pure Python and NumPy, and RDataFrame [2], the
modern ROOT’s high-level interface for efficient data analysis. In both cases the workflows were
executed in a Python script. With reference to a representative HEP workflow taken as use
case, we evaluated the performance of these two software packages.

2. Methods
2.1. Analysis task
In order to properly assess the performance of Uproot and RDataFrame , we conducted our
study using a representative HEP analysis workflow. The ROOT files used in our study, which
have a total size of about 128GB, come from CMS Experiment [3] Open Data [4]. The data



Figure 1. Mass distribution of B0
s candidates before and after data selection.

contains the reconstructed data corresponding to pp collisions from LHC Run1 from which the
signal associated with a decay chain of a beauty meson (B0

s → J/ψϕ, J/ψ → µµ, ϕ → KK) is
reconstructed. The goal of the workflow is to separate this signal from background noise, which
made up most of the data.

Using Uproot and RDataFrame, we measured the total execution time of the following
operations:

• accessing the data, stored as a ROOT TTree in the input ROOT files;

• applying specific filters (selection criteria) on the variables stored in the table in order to
extract a known physical signal associated with the B0

s meson. Note that in both cases the
filtering has been done within the Uproot or the RDataFrame framework, thus relying
on their internal C++ backend implementation.

• converting the column (TBranch) containing the invariant mass of the particle to a
NumPy array

No output file is written in the process. Figure 1 shows the meson mass distribution before
and after the data selection procedure.

2.2. Parallel processing
The main goal of this study, is to test how the workflow mentioned above may be accelerated
by splitting the workload on multiple processors, namely multiple CPUs on a single server,
processing equal blocks of data concurrently. In the best case scenario, if all the process tasks
may be parallelized, running in parallel would reduce the execution time by a factor of P, namely
the number of parallel processes [5].

2.2.1. Parallel processing with Uproot

Uproot does not provide a built-in option for implicit parallel processing. To enable
parallelism, therefore, we manually split the data into smaller chunks and then create
subprocesses with Python’s multiprocessing module to handle them. Since Uproot allows
users to specify the number of rows to be processed in each table, data can be evenly distributed
among all the subprocesses. Thus, the processing time function for Uproot may be computed
as

T (Nr, P ) = C + tr⌈
Nr

P
⌉ (1)

where tr is the time it takes to process one row, Nr is the total number of rows in the entire
dataset, P is the number of processes, and C is the processing time of the not parallelizable
parts of the workflow, which includes operations such as file opening and array concatenation.



Through testing, we found that C is constant with respect to the amount of data and the number
of processes. The fraction Nr

P is rounded up so that no row is lost when distributing data to
each process.

2.2.2. Parallel processing with RDataFrame

RDataFrame , on the other hand, has a built-in function (EnableImplicitMT()) to enable
implicit parallelism that allows to specify the number of threads on which the workload may be
offloaded. Unlike Uproot , RDataFrame does not provide the option to specify the number of
rows to be processed in each table, so a single file represents the smallest unit of data assignable
to a single process. As a result, an even distribution is not always guaranteed given that, if the
number of files is not divisible by the number of processes, some processes would have to handle
one extra file. Then, an uneven distribution of file sizes would result in an unbalanced workload
bottle-necking the entire workflow. To prevent this, therefore, we split the original dataset into
128 files of the same size. To ensure a fair comparison, we used these files as input for both
Uproot and RDataFrame . Thus, the processing time function for RDataFrame may be
formulated as

T (Nf , P ) = C + tf⌈
Nf

P
⌉ (2)

where tf is the time it takes to process one file and Nr is the total number of files in the entire
dataset.

2.3. Computing resources
Measurements were run on three different machines on the ReCaS-Bari computing center: wn-
gpu-8-3-22 (256 CPUs, i.e. 2 AMD EPYC 7742 Processors), wn-1-8-9 (64 CPUs, i.e. 2 AMD
EPYC 7281 Processors), and tesla04 (32 Intel(R) Xeon(R) Silver 4110 CPUs @ 2.10GHz). For
the first two machines, data could only be stored remotely on the computing cluster, via the
Lustre file-system [6], while on tesla04, it was possible to access the data on the local optical
disks. Therefore, we used tesla04 to also study the potential difference in performance between
local and remote data storage.

3. Result

Figure 2. Processing time when accessing the data locally (teal) or remotely (orange) versus
the number of processes on tesla04 machine. Left, using RDataFrame . Right, using Uproot.

As a first test, we checked the effect of accessing the data either locally or remotely, and
we verified it is negligible. Figure 2 shows the processing time as a function of the number of
processes for both RDataFrame and Uproot. In all other measurements, therefore, data were
always accessed remotely.



Figure 3. Processing time (left) and speed-up (right) for the whole dataset of Uproot (blue)
and RDataFrame (red) as a function of the number of processes on different machines: wn-gpu-
8-3-22 with 256 CPUs (top), wn-1-8-9 with 64 CPUs (middle), tesla04 with 32 CPUS (bottmom).

Secondly, we measured the processing time as a function of the number of processes, reported
in Figure 3, and we found it consistent with the processing time functions in Equations (2)
and (1). While the curves of Uproot are fairly smooth, we can see a discrete pattern in
RDataFrame ’s plots. This reflects the fact that RDataFrame ’s smallest unit of data is a
single file, resulting in a coarser granularity compared to Uproot , which allows the user to
distribute the workload on a single entry basis. From Figure 3, it can also be observed that,
in both configurations, we gained a significant performance boost when offloading the workload
on multiple processors. On the machine wn-gpu-8-3-22, for instance, Uproot reached speed-
ups up to 9 and RDataFrame , with 128 subprocesses, ran over 50 times faster than with a
single process. As expected, we did not gain anything when we created more subprocesses than
the number of CPUs on the machine. This is clearly visible on wn-1-8-9 and tesla04, which
have 64 and 32 CPUs, respectively. With Uproot , however, the performance boost peaks at
around 32 processes, no matter how many CPUs we use. This is because for Uproot , the
unparalellizable time C is large, mostly due to the time needed to spawn each new process. As a
result, it dominates the speed-up gained when the number of processes increases. In the case of
RDataFrame , C is relatively small, so the performance improves until the maximum number



of CPUs is reached.

Figure 4. Processing time of Uproot (blue)
and RDataFrame (red) as a function of the
data size at a fixed number of processes: wn-
gpu-8-3-22 with 256 CPUs (top left), wn-1-8-
9 with 64 CPUs (top right), tesla04 with 32
CPUs (bottom).

Finally, Figure 4 shows that, as expected, the total processing time is linearly proportional
to the size of data. In RDataFrame ’s curves, a step-like pattern is observed, reflecting the
file-based parallelism approach we mentioned above.

4. Conclusion
In this study, we compared the performance of Uproot and RDataFrame when offloading
a simplified standard HEP workflow on multiple cores. While Uproot ran faster at fewer
processes, RDataFrame performed better as the number of processes increase above 32,
suggesting that on machines with an higher number of CPUs, it is more beneficial to use the
latter. However, we must keep in mind that RDataFrame reached such a great performance
because the original dataset had been previously split into smaller and evenly sized files. In a
real-life data analysis scenarios, such condition may be not guaranteed, so Uproot may still
be the better choice.
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