

Ideas for MPW3 chipboard implementation

Patrick Sieberer

Main concepts

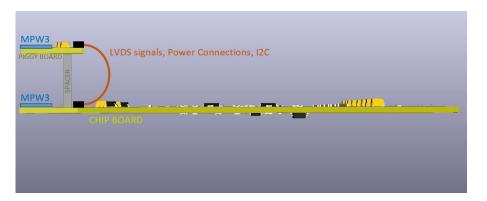
- Keep the functionalities of MPW2
 - AMUX, ABUFF, SFOUT, COMPOUT
 - COMPOUT now called HB
 - Configuration of SFOUT and HB via I2C
 - Configuration of AMUX as in MPW2
 - Use case: S-curves (Threshold scan), beam energies, ...
 - S-curves can be done with digital readout as well
- Implement new functionalities
 - 4 Teststructures for needle measurements
 - 1 as in MPW2, 3 new ones
 - Will be presented later
 - Use case: Cleanroom, IV, CV, eTCT, ...
 - Digital readout
 - Source measurements
 - Testbeams

Testbeam implementation

MPW3 as DUT

- Use MPW3 as DUT in a telescope
- Tracking capability
 - Readout rate
 - Track reconstruction
 - Track resolution
- Similar to what we did in Vienna for MPW2 for a single pixel

MPW3 as telescope


- Use 4 MPW3 as telescope
 - Synchronized & triggered together
- Active pixel area ~4x4mm²
 - Should give ~2.5x2.5mm²
 tracking area in medical
 beams (scattering in air)
 - Full area available for tracks at CERN, DESY
- Goal: Demonstrator of a HV-CMOS telescope

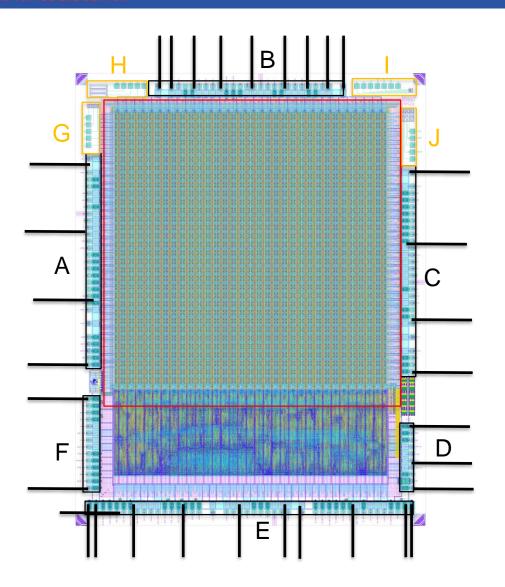
Chipboard

- Having 4 CaR-board + 4
 ZYNCs is expensive and
 difficult to align
- Proposal: Stacked design
 - Chipboard for one MPW3
 - Featuring all functions of the chip, incl. monitoring
 - Connector for an optional piggy board with a second MPW3 chip

- Chipboard fully functional also without piggy board
 - To be used similar to MPW2
- Piggy board
 - Reduced, smaller PCB
 - Only important signals connected (less monitoring, ...)
- Spacer of a few cm, adjustable
- Flexible Cable of ~10cm
- We already have a first proposal for the schematic of these 2 PCBs
- We want to discuss this after the meeting with everybody interested
- We also have ideas for software + started implementing it (Bernhard's talk)

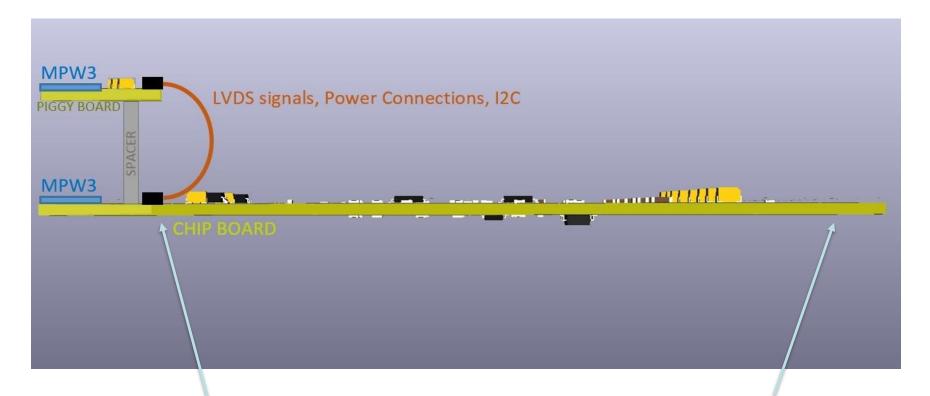
BACKUP

Chip I/C



- Documentation of IO pads (pdf) on indico
- Figures will be available with better resolution soon

PCB opening and bonding



- Need bonding pads on all 4 sides
- A, B and C are in principle redundant, but we (=the designer) very warmly recommend to bond all sides. (power distribution)
- D, E and F are needed in any case
- Teststructures (+Pads) G, H, I and J
 - J is the 3x3 pixel structure (eTCT)
- Opening below pixel matrix (material budget)

Scatch of chip board stack

Additional connector to attach piggy board with 2nd chip. This connector is also used to probe signals in single chip operation

SAMTEC connector → Carboard