IUEP Theory Meeting, Jan 7, 2022

Prospects for Probing the Quartic Higgs Self-coupling at the Future Colliders

Jeong Han Kim

(Chungbuk Natl. U.)

Benjamin Fuks, J. H. Kim, and Seung J. Lee [Phys. Lett. B 771 (2017)]

Benjamin Fuks, J. H. Kim, and Seung J. Lee

[Phys. Rev. D 3 (2016)]

Outline

- Motivation & Overview
- Effective Field Theory (EFT) Approach
- Parameterizations of Higgs couplings
- Probing the quartic Higgs self-coupling at
 - 1. FCC-hh 100 TeV Collider
 - 2. Future e^+e^- Colliders
 - 3. Future Multi-TeV Muon Colliders
- Summary

What We Have Found So Far

• After a long period of direct searches in the LHC, no tantalizing evidence of new physics has been found.

• What are we going to do about it?

• How are we going to make a progress to understand the next layer of physics?

What Are We Going to Do?

• Hidden in exotic places

• The null result opens up various possibilities...

- Very light
- Completely neutral under the SM gauge group

• Too heavy to directly probe

Effective Field Theory (EFT) Approach

- If the scale of new physics is too heavy to reach.
- The EFT provides a framework to encode new physics effects in higher dimensional operators.

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_1^{(6)}}{\Lambda_{NP}^2} \mathcal{O}_1^{(6)} + \frac{c_2^{(6)}}{\Lambda_{NP}^2} \mathcal{O}_2^{(6)} + \cdots + \frac{\Lambda_{EW}}{\Lambda_{EW}}$$

Effective Field Theory (EFT) Approach

- Precision measurements of these coefficients will tell us two things:
- What would be a rough scale of new physics.
- What would be a possible structure of the underlying new physics.

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_1^{(6)}}{\Lambda_{NP}^2} \mathcal{O}_1^{(6)} + \frac{c_2^{(6)}}{\Lambda_{NP}^2} \mathcal{O}_2^{(6)} + \cdots + \frac{\Lambda_{EW}}{\Lambda_{EW}}$$

Precision Higgs Physics

- The Higgs boson can be used as a BSM indicator.
- To see deviations in the Higgs couplings that give a hint of the new physics.
- Typical modifications of the Higgs couplings induced by new physics:

 $2 \to 2 \text{ process}$: $\frac{\delta c}{c} \sim \frac{g_*}{g_{SM}} \frac{E^2}{m_*^2}$ their coupling strength to the Higgs mass of new states

• Typically growing with E (large corrections to Higgs couplings).

The Shape of the Higgs Potential

$$V(\Phi) \qquad V_{h} = \frac{m_{h}^{2}}{2}h^{2} + c_{3}\frac{m_{h}^{2}}{2v}h^{3} + c_{4}\frac{m_{h}^{2}}{8v^{2}}h^{4}$$

$$local properties$$

$$v = 246 \text{ GeV} \qquad |\Phi|$$

- A precise knowledge on the Higgs self-couplings is key to reconstruct the Higgs potential.
- Only the first term has been probed.

- Probing the c_3 and c_4 couplings provides a crucial information.
- We might be able to confirm the SM EWSB, or discover a new mechanism.

The Shape of the Higgs Potential

$$V(\Phi) \qquad V_{h} = \frac{m_{h}^{2}}{2}h^{2} + c_{3}\frac{m_{h}^{2}}{2v}h^{3} + c_{4}\frac{m_{h}^{2}}{8v^{2}}h^{4}$$
Taken from Agrawal, Saha, Xu, Yu, Yuan [2020]
$$Iocal properties$$

$$V = 246 \text{ GeV} \qquad |\Phi|$$

- Probing the c_3 and c_4 couplings provides a crucial information.
- We might be able to confirm the SM EWSB, or discover a new mechanism.

Coleman-Weinberg Higgs

Tadpole-Induced Higgs

Parameterizations of Higgs Self-Couplings (Linear Basis) \leftarrow Use c_3 and c_4 to denote Higgs self-couplings

After EWSB...

- All the above scenarios can be described in the EFT famework.
- Gauge-invariant dimension-6 operators relevant to multi-Higgs productions.

$$\frac{\overline{c}_{H}}{2v^{2}}(\partial^{\mu}|H|^{2})^{2} - \frac{\overline{c}_{6}}{v^{2}}\left(\frac{m_{h}^{2}}{2v^{2}}\right)|H|^{6} + \frac{\overline{c}_{u}}{v^{2}}y_{t}(|H|^{2}\overline{Q}_{L}H^{c}t_{R} + \text{h.c.}) + \cdots$$

Giudice, Grojean, Pomarol, Rattazzi [2007], ...

$$\mathcal{L} = -m_t t \bar{t} \left(c_t \frac{h}{v} + c_{2t} \frac{h^2}{v^2} \right) - c_3 \left(\frac{m_h^2}{2v} \right) h^3 - c_4 \left(\frac{m_h^2}{8v} \right) h^4 + \dots$$

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}_6 + \Delta \mathcal{L}_8 + \cdots$

• Assume $\bar{c}_H = 0$.

• c_3 and c_4 are related to each other.

$$c_4 = 6c_3 - 5$$

 $c_3 \simeq 1 - \frac{3}{2}\bar{c}_H + \bar{c}_6 \qquad c_4 \simeq 1 - \frac{25}{3}\bar{c}_H + 6\bar{c}_6$

Parameterizations of Higgs Self-Couplings (Non-Linear Basis) Use κ_3 and κ_4 to denote

Higgs self-couplings

- In the non-linear basis, however, all couplings are assumed to be free parameters.
- The Higgs is not a part of $SU(2)_L$ doublet, but it can be more generic.

$$\mathcal{L} = -m_t t \bar{t} \left(\kappa_t \frac{h}{v} + \kappa_{2t} \frac{h^2}{v^2} \right) - \kappa_3 \left(\frac{m_h^2}{2v} \right) h^3 - \kappa_4 \left(\frac{m_h^2}{8v} \right) h^4 + \dots$$
(\kappa framework)

- Simply rescaling the SM interactions with simplied EFT to encapsulate NP effects.
- We will assume the SM top Yukawa, and vary κ_3 and κ_4 independently...

$$(\kappa_t = 1, \kappa_{2t} = 0)$$

Tiple Higgs production

• The first avenue to scrutinize these Higgs couplings is *hh* production.

- The *hhh* production was the first avenue to probe $\kappa_{4.}$
- It has a mild dependence on κ_4 , and strong dependence on and κ_3 .
- It receives a phase space suppression (cf. double Higgs production).
- So the signal rate is expected to be small.

Tiple Higgs production

F. Maltoni, E. Vryonidou, M. Zaro [2014]

Impossible to probe at LHC

• Signal rate is 0.1 fb ...

FCC-hh at 100 TeV

• In this stage, at 100 TeV FCC, signal rate can reach to 5 fb...

SM prediction

Cross Cections in the $\kappa_3 - \kappa_4$ **Plane**

- Strong dependence on κ_3
- Mild dependence on κ_4
- Destructive interference in the region of $1 < \kappa_3 < 3$ $1 < \kappa_4 < 15$
- Even at the 100 TeV, the cross section is small.

B. Fuks, J. H. Kim, S. J. Lee [2015]

Rich Final States

Number of events $(30ab^{-1})$

• $(b\bar{b})(b\bar{b})(\gamma\gamma)$ channel				(30a0)
Panaefstathiou Sakurai [2015]	$hhh \rightarrow \text{final state}$	BR (%)	σ (ab)	$N_{30 \mathrm{ab}^{-1}}$
	$\overline{(bar{b})(bar{b})(bar{b})}$	19.21	1110.338	33310
B. Fuks, J. H. Kim , S. J. Lee [2015]	$(bar{b})(bar{b})(WW_{1\ell})$	7.204	416.41	12492
Class signature and low bookgrounds	$(bar{b})(bar{b})(auar{ au})$	6.312	364.853	10945
··· Clean signature and low backgrounds	$(b\bar{b})(\tau\bar{ au})(WW_{1\ell})$	1.578	91.22	2736
	$(b\bar{b})(b\bar{b})(WW_{2\ell})$	0.976	56.417	1692
	$(b\overline{b})(WW_{1\ell})(WW_{1\ell})$	0.901	52.055	1561
$(b\bar{b})(WW*)$ (WW*) channel	$(b\bar{b})(\tau\bar{ au})(\tau\bar{ au})$	0.691	39.963	1198
• $(DD)(WW)_{1\ell}(WW)_{1\ell}$ channel	$(b\underline{b})(bb)(ZZ_{2\ell})$	0.331	19.131	573
Kilian Sun Yan Zhao [2017]	$(b\overline{b})(WW_{2\ell})(WW_{1\ell})$	0.244	14.105	423
Trinuit, Suit, Tuit, Zhuo [2017]	$(b\underline{b})(bb)(\gamma\gamma)$	0.228	13.162	394
\cdots The same-sign dilepton $\ell^+\ell^+$ or $\ell^-\ell^-$	$(b\bar{b})(\tau\bar{\tau})(WW_{2\ell})$	0.214	12.359	370
ine same sign anepton e e er e e .	$(\tau \bar{\tau})(WW_{1\ell})(WW_{1\ell})$	0.099	5.702	171
	$(\tau \bar{\tau})(\tau \bar{\tau})(W W_{1\ell})$	0.086	4.996	149
	$(b\underline{b})(ZZ_{2\ell})(WW_{1\ell})$	0.083	4.783	143
• $(b\bar{b})(b\bar{b})(\tau\bar{\tau})$ channel	$(b\underline{b})(\tau \overline{\tau})(ZZ_{2\ell})$	0.073	4.191	125
	$(b\underline{b})(\gamma\gamma)(WW_{1\ell})$	0.057	3.291	98
B. Fuks, J. H. Kim, S. J. Lee [2018]	$(bb)(auar{ au})(\gamma\gamma)$	0.05	2.883	86
	$(WW_{1\ell})(WW_{1\ell})(WW_{1\ell})$	0.038	2.169	65
With an advantage of $4b + 2\tau$ tagging	$(\tau \bar{\tau})(WW_{2\ell})(WW_{1\ell})$	0.027	1.545	46
With an advantage of 10 + 21 tagging	$(auar{ au})(auar{ au})(auar{ au})$	0.025	1.459	43
	$(bb)(WW_{2\ell})(WW_{2\ell})$	0.017	0.956	28
	$(WW_{2\ell})(WW_{1\ell})(WW_{1\ell})$	0.015	0.882	26
• $(b\bar{b})(b\bar{b})(b\bar{b})$ channel	$(bb)(bb)(ZZ_{4\ell})$	0.012	0.69	20
	$(\tau\bar{\tau})(\tau\bar{\tau})(WW_{2\ell})$	0.012	0.677	20
Papaefstathiou, Tetlalmatzi, Zaro [2019]	$(bb)(ZZ_{2\ell})(WW_{2\ell})$	0.011	0.648	19
	$(\tau\bar{\tau})(ZZ_{2\ell})(WW_{1\ell})$	0.009	0.524	15
··· Large branching fraction (19%)	$(bb)(\gamma\gamma)(WW_{2\ell})$	0.008	0.446	13
	$(auar{ au})(\gamma\gamma)(WW_{1\ell})$	0.006	0.36	10

Papaefstathiou, Sakurai [2015]

Constraints from $hhh \rightarrow (b\bar{b})(b\bar{b})(\gamma\gamma)$

Papaefstathiou, Sakurai [2015]

process	$N_{30 \text{ ab}^{-1}}^{\text{cuts}}$
$hhh \to (b\bar{b})(b\bar{b})(\gamma\gamma), \text{SM}$	9.7
$hhh \to (b\bar{b})(b\bar{b})(\gamma\gamma), c_6 = 1.0$	1.1
$hhh \to (b\bar{b})(b\bar{b})(\gamma\gamma), c_6 = -1.0$	22.5
$b\overline{b}b\overline{b}\gamma\gamma$	8.2 -
hZZ , (NLO) $(ZZ \to (b\bar{b})(b\bar{b}))$	$\ll 1$
$hhZ, (NLO)(Z \to (b\bar{b}))$	$\ll 1$
hZ , (NLO) $(Z \to (b\bar{b}))$	$\ll 1$
$b\bar{b}b\bar{b}\gamma + ext{jets}$	$\mathcal{O}(1)$
$b\bar{b}b\bar{b} + ext{jets}$	$\ll 1$
$bar{b}\gamma\gamma$ + jets	$\ll 1$
hh + jets, SM	12.4
$hh + jets, c_6 = 1.0$	9.9
$hh + jets, c_6 = -1.0$	13.4

- In the end of days, only 10 events are expected.
- A major background (including light jets faking *b*-jets and γ 's)

• Double Higgs production is a part of backgrounds.

Parton-level analysis

Constraints from $hhh \rightarrow (bb)(bb)(\gamma\gamma)$

- Assuming $\kappa_3 = 1$, constraints are $-3 < \kappa_4 < 11$ [2 σ] $-1 < \kappa_4 < 10$ [1 σ]
- The κ_4 will be poorly constrained.

• The bound largely depends on κ_3 .

Constraints from $hhh \rightarrow (b\bar{b})(b\bar{b})(\tau\bar{\tau})$

B. Fuks, J. H. Kim, S. J. Lee [2018]

1. Boosted phase space

Boosted phase space

B. Fuks, J. H. Kim, S. J. Lee [2018]

- There is a reasonable boosted phase space, at the cost of $\sim 50\%$ signal loss.
- Two *b* jets from a Higgs are collimated.
- The jet-substructure technique may be able to reduce backgrouds.

Boosted Higgs Reconstruction

- Reconstructed boosted Higgs mass (before b-tagging).
- The use of boosted phase turns out to be useful to suppress the backgrounds.

$h_{\tau\tau}$ Reconstruction

- The $h \rightarrow \tau \tau$ reconstruction can reduce potentially large Drell-Yan backgrounds.
- The continuum t/W-containing backgrounds can be also effectively removed.

- To eliminate the WW-containing backgrounds using the end-point feature of M_{T2} varible.
- It is tricky because there are two neutrinos on each branch in WW-containing backgrounds.
- What test mass m_{χ}^{test} should we use?
- Our Ad-hoc choice is $m_{\chi}^{\text{test}} = 190 \text{ GeV}.$

M_{T2} construction

- Signal M_{T2} distribution is slightly broader than WW-containing backgrounds.
- M_{T2} cut helps to disentangle WW-containing backgrounds.

Constraints from $hhh \rightarrow (b\bar{b})(b\bar{b})(\tau\bar{\tau})$

Pythia-level analysis (no-detector effects)

- Significance contours for 30 ab^{-1} .
- Assuming $\kappa_3 = 1$, the constraint turns out to be

 $-3 < \kappa_4 < 11 \quad [2\sigma] \quad (b\bar{b})(b\bar{b})(\gamma\gamma)$

 $[2\sigma] (b\bar{b})(b\bar{b})(\tau\bar{\tau})$

 $1 < \kappa_4 < 8$

• The bound is at least comparable with the $(b\bar{b})(b\bar{b})(\gamma\gamma)$ channel.

Constraints from $hhh \rightarrow (b\bar{b})(WW^*)_{1\ell}(WW^*)_{1\ell}$

- Requiring the same-sign dilepton $\ell^+\ell^+$ or $\ell^-\ell^-$ suppresses backgrounds.
- The bound turns out to be

$$-10 < \kappa_4 < 20 \qquad [2\sigma]$$

• It is weaker than any other channels considered above.

Detector-level analysis

Constraints from $hhh \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$

• The $(b\bar{b})(b\bar{b})(b\bar{b})$ channel takes an advantage of the largest branching ratio.

• The bound turns out to be

$$-5 < \kappa_4 < 18 \qquad [2\sigma]$$

Parton-level analysis

Constraints from *hhh*

• $(b\bar{b})(b\bar{b})(\gamma\gamma)$ channel

Papaefstathiou, Sakurai [2015]B. Fuks, J. H. Kim, S. J. Lee [2015]

 $-3 < \kappa_4 < 11 \quad [2\sigma]$

• $(b\bar{b})(WW^*)_{1\ell}(WW^*)_{1\ell}$ channel

Kilian, Sun, Yan, Zhao, Zhao [2017]

- $-10 < \kappa_4 < 20$ [2 σ]
- $(b\bar{b})(b\bar{b})(\tau\bar{\tau})$ channel

B. Fuks, J. H. Kim, S. J. Lee [2018]

- $1 < \kappa_4 < 8$ [2 σ]
- $(b\bar{b})(b\bar{b})(b\bar{b})$ channel

Papaefstathiou, Tetlalmatzi, Zaro [2019]

 $-5 < \kappa_4 < 18$ [2 σ]

$\overline{hhh} \rightarrow \text{final state}$	BR (%)	σ (ab)	$N_{30 \mathrm{ab}^{-1}}$
$\overline{(bar{b})(bar{b})(bar{b})}$	19.21	1110.338	33310
$(b\overline{b})(b\overline{b})(WW_{1\ell})$	7.204	416.41	12492
$(b\bar{b})(b\bar{b})(\tau\bar{\tau})$	6.312	364.853	10945
$(b\bar{b})(\tau\bar{\tau})(WW_{1\ell})$	1.578	91.22	2736
$(b\overline{b})(b\overline{b})(WW_{2\ell})$	0.976	56.417	1692
$(b\overline{b})(WW_{1\ell})(WW_{1\ell})$	0.901	52.055	1561
$(b\bar{b})(\tau\bar{\tau})(\tau\bar{\tau})$	0.691	39.963	1198
$(b\overline{b})(b\overline{b})(ZZ_{2\ell})$	0.331	19.131	573
$(b\bar{b})(WW_{2\ell})(WW_{1\ell})$	0.244	14.105	423
$(b\bar{b})(b\bar{b})(\gamma\gamma)$	0.228	13.162	394
$(b\bar{b})(\tau\bar{\tau})(WW_{2\ell})$	0.214	12.359	370
$(\tau \overline{\tau})(WW_{1\ell})(WW_{1\ell})$	0.099	5.702	171
$(\tau \bar{\tau})(\tau \bar{\tau})(WW_{1\ell})$	0.086	4.996	149
$(b\bar{b})(ZZ_{2\ell})(WW_{1\ell})$	0.083	4.783	143
$(b\bar{b})(\tau\bar{\tau})(ZZ_{2\ell})$	0.073	4.191	125
$(b\overline{b})(\gamma\gamma)(WW_{1\ell})$	0.057	3.291	98
$(bar{b})(auar{ au})(\gamma\gamma)$	0.05	2.883	86
$(WW_{1\ell})(WW_{1\ell})(WW_{1\ell})$	0.038	2.169	65
$(\tau \bar{\tau})(WW_{2\ell})(WW_{1\ell})$	0.027	1.545	46
$(\tau \bar{\tau})(\tau \bar{\tau})(\tau \bar{\tau})$	0.025	1.459	43
$(b\bar{b})(WW_{2\ell})(WW_{2\ell})$	0.017	0.956	28
$(WW_{2\ell})(WW_{1\ell})(WW_{1\ell})$	0.015	0.882	26
$(bar{b})(bar{b})(ZZ_{4\ell})$	0.012	0.69	20
$(auar{ au})(auar{ au})(WW_{2\ell})$	0.012	0.677	20
$(b\bar{b})(ZZ_{2\ell})(WW_{2\ell})$	0.011	0.648	19
$(auar{ au})(ZZ_{2\ell})(WW_{1\ell})$	0.009	0.524	15
$(b\bar{b})(\gamma\gamma)(WW_{2\ell})$	0.008	0.446	13
$(\tau \bar{\tau})(\gamma \gamma)(WW_{1\ell})$	0.006	0.36	10

Papaefstathiou, Sakurai [2015]

The Quartic Coupling from Double Higgs

- The *hh* production is a major avenue to probe κ_3 coupling at LO.
- However, the *hh* production also contains κ_4 at NLO.
- This may provide a chance probe κ_4 .

The Quartic Coupling from Double Higgs

• The NLO cross ection is shown as a ratio between:

$$\sigma_{NLO} = \sigma_{NLO}(\kappa_3, \kappa_4)$$

 $\sigma_{LO}^{SM} \sim 20 \text{ fb}$

• Strong dependence on κ_3 .

• Mild dependence on κ_4 .

 $hh (bb\gamma\gamma)$ vs $hhh (bbbb\gamma\gamma)$

Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao [2018]

• Assuming $\kappa_3 = 1$, the constraint turns out to be

 $[2\sigma]$

 $-4 < \kappa_4 < 6$

• The bound is stronger than *hhh*.

$$-3 < \kappa_4 < 11 \quad [2\sigma]$$

Papaefstathiou, Sakurai [2015]

 $hh (bb\gamma\gamma)$ vs $hhh (bbbb\gamma\gamma)$

Bizon, Haisch, Rottoli [2019]

- The same final state is analyzed by Bizon et. al.
- Assuming $\kappa_3 = 1$, the bound turns out to be weaker

hh:
$$-5 < \kappa_4 < 14$$
 [2 σ]
Bizon, Haisch, Rottoli [2019]
hh: $-4 < \kappa_4 < 6$ [2 σ]

Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao [2018]

• In general, the bound from the *hh* is comparable with the one from *hhh*.

Benchmark Future e^-e^+ **Colliders**

	$\sqrt{\hat{s}} [{ m GeV}]$	Luminosity $[ab^{-1}]$
CEPC	250	5.0
FCC on	240	10.0
FUU-ee	350	2.6
	250	2.0
ILC	500	4.0
	1000	2.0
	350	0.5
CLIC	1400	1.5
	3000	2.0

- Future e^-e^+ colliders with target energies and luminosities are shown here.
- Can κ_4 be better constrained at e^-e^+ colliders?

Single Higgs Production at e^-e^+ Colliders

Single Higgs Production at e^-e^+ Colliders

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao [2020]

Single Higgs Production at e^-e^+ Colliders

Double Higgs Production at e^-e^+ **Colliders**

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao [2020]

 κ_4 appears at one-loop.

The *vvhh* process grows with energy

Double Higgs Production at e^-e^+ **Colliders**

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao [2020]

In the linear-basis, the quartic coupling can be constrained by

$$-2 < c_4 < 4$$

 $(c_4 = 6c_3 - 5 \text{ is assumed})$

• This bound is comparable with the single Higgs search.

Triple Higgs Production at e^-e^+ **Colliders**

LO Z mars Z Ζ Zhhh: s-channel $\bar{\nu}_e$ $\bar{\nu}_e$ vvhhh: • with energy. W-boson fusion e^+ ν_e (WBF) 1.23 WBF HHH ($\bar{c}_6 = 0, \bar{c}_8 =$ (0)WBF *HHH* ($\bar{c}_6 = 0, \bar{c}_8 = -1$) 2.51 WBF HHH ($\bar{c}_6 = 0, \bar{c}_8 = -1$) - - σ_{02} (WBF *HHH*) -----0.82 $\sigma_{\rm LO} \, [\rm ab]$ $\sigma LO [ab]$ Growing with energy 1.50.60.41 $ZHHH \ (\bar{c}_6 = 0, \bar{c}_8 =$ (0) $ZHHH \ (\bar{c}_6 = 0, \bar{c}_8 = -1)$ 0.20.5 $ZHHH \ (\bar{c}_6 = 0, \bar{c}_8 = 1)$. . . $100 \times \sigma_{02}(ZHHH)$ 0 0 3000 500 1000 150025002000 25002000 5001000 1500

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao [2020]

- κ_4 appears at tree-level.
- Cross sections are very small.
- However, the *vvhhh* process grows

3000

Triple Higgs Production at e^-e^+ **Colliders**

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao [2020]

- Bounds are presented in the linear basis.
- In the linear-basis, the quartic coupling can be constrained by

 $-23 < c_4 < 19$

- $(c_4 = 6c_3 5 \text{ is assumed})$
- No meaningful bound can be obtained.

Motivation for a Multi-TeV Muon Collider

2200 $\mu^+\mu^- \to HHH\nu\overline{\nu}$ 2000 WHIZARD 1800 1600 events (L=100 ab^{-1}) $\delta_4 = -1$ 14001200 $\delta_4 = 0 \text{ (SM)}$ 1000800 Ζ 600 400 Growing with energy 2005202530 1015 \sqrt{s} [TeV]

- κ_4 appears at tree-level.
- At high energy multi-TeV muon collider, we • might be able to probe κ_4 .

Benchmarks for a Future Muon Collider

Muon Collider Working Group [1901.06150]

- Future muon colliders with target energies and luminosities are shown here.
- A large muon mass suppresses the synchrotron radiation by a factor of 10^9 (cf. e^-e^+ colliders).

$\sqrt{s} (\text{TeV}) / \text{L} (\text{ab}^{-1})$	1.5 / 1.2	3 / 4.4	6 / 12	10 / 20	14 / 33	30 / 100
$\sigma_{SM} (ab) [N_{ev}]$						
$\sigma^{ m tot}$	0.03 [0]	0.31 [1]	1.65 [20]	4.18 [84]	7.02 [232]	18.51 [1851]
$\sigma(M_{HHH} < 3 \text{ TeV})$	0.03 [0]	0.31 [1]	1.47 [18]	2.89 [58]	3.98 [131]	6.69 [669]
$\sigma(M_{HHH} < 1 \text{ TeV})$	0.02 [0]	0.12 [1]	0.26 [3]	0.37[7]	0.45 [15]	0.64 [64]

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao [2020]

A number of events

• At the 30 TeV muon collider, there are reasonable amount of a number of events to play with.

Triple Higgs Production at a Muon Collider

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao [2020]

- Assuming all Higgses decay into $b\bar{b}$.
- No $BR(h \rightarrow b\bar{b})$ is taken into account.
- Assuming a perfect *b*-tag.
- Only $(\nu\nu hhh)_{\kappa_3=1,\kappa_4=1}$ is taken to be a background.

\sqrt{s} (TeV)	Lumi (ab^{-1})	Constraints on $\kappa_4 - 1$ x-sec only, acceptance cuts			Constraints on $\kappa_4 - 1$ x-sec only, acceptance cuts		• The quartic coupling can be constrained
		1σ	2σ	3σ	with 40% precision.		
6	12	[-0.50, 0.70]	[-0.74, 0.95]	[-0.93, 1.15]			
10	20	[-0.37, 0.54]	[-0.55, 0.72]	[-0.69, 0.85]			
14	33	[-0.28, 0.43]	[-0.42, 0.58]	[-0.52, 0.68]			
30	100	[-0.15, 0.30]	[-0.24, 0.38]	【−0.30, 0.45]	$-0.76 < \kappa_4 < 1.38$		
3	100	[-0.34, 0.64]	[-0.53, 0.82]	[-0.67, 0.97]			

Triple Higgs Production at a Muon Collider

Chen, Li, Lu, We, Yao[2021]

- The same final state is analyzed by Chen et. al. including realistic backgrounds.
 - With including a simple detector effect.
 - The bounds are presented in the linear basis (difficult to compare apple-to-apple).

 $-0.56 < c_4 < 2.44$

$$(c_4 = 6c_3 - 5 \text{ is assumed})$$

 $0.74 < c_3 < 1.24$

channels	\sqrt{s}	coupling $[\text{TeV}^{-2}]$	2σ
	$10 \text{ T}_{0} \text{V}$	c_6/Λ^2	[-1.176, 1.258]
WINF	10 1ev	c_{Φ_1}/Λ^2	[-0.450, 0.547]
VV VV IL	$20 \text{ T}_{0} \text{V}$	c_6/Λ^2	[-0.609, 0.511]
	30 TeV	c_{Φ_1}/Λ^2	[-0.0566, 0.0843]
776	$20 \text{ T}_{0} \text{V}$	c_6/Λ^2	[-1.761, 1.570]
	50 Iev	c_{Φ_1}/Λ^2	[-0.0962, 0.112]
	$10 \text{ T}_{0} \text{V}$	c_6/Λ^2	[-1.194, 1.075]
bbb	10 TeV 30 TeV	c_{Φ_1}/Λ^2	[-0.386, 0.457]
		c_6/Λ^2	[-0.474, 0.442]
		c_{Φ_1}/Λ^2	$\left[-0.0516, 0.0734 ight]$
	$10 { m TeV}$	c_6/Λ^2	[-1.005, 0.971]
combined		c_{Φ_1}/Λ^2	[-0.342, 0.424]
	$30 { m TeV}$	c_6/Λ^2	[-0.442, 0.407]
		c_{Φ_1}/Λ^2	[-0.0422, 0.0666]

Opportunities at a Muon Collider

2. Combining Different Final States

- $(b\bar{b})(b\bar{b})(\gamma\gamma)$ channel
- $(b\bar{b})(b\bar{b})(\tau\bar{\tau})$ channel

Other Benchmark Future Colliders?

• A future *ep* collider with $E_e = 60$ GeV and $E_p = 50$ TeV?

• For more about the *ep* collider, See the talk by Prof. Jeong Hyeon Song.

Summary

- Probing the Higgs self-couplings provides a crucial information on the EWSB.
- So far, no meaningful precision on the quartic coupling can be obtained at FCC-hh 100 TeV.
- Future e^-e^+ colliders have limited sensitivities on the quartic coupling.

- A future 30 TeV muon collider with 100 ab^{-1} luminosity may be able to probe the quartic coupling.
- Here a dedicated analysis on combining various final states makes a sense to try.

back-up